Accelerating search and recognition with a TCAM functional unit

Atif Hashmi, Mikko H. Lipasti
{"title":"Accelerating search and recognition with a TCAM functional unit","authors":"Atif Hashmi, Mikko H. Lipasti","doi":"10.1109/ICCD.2008.4751844","DOIUrl":null,"url":null,"abstract":"World data is increasing rapidly, doubling almost every three years[1][2]. To comprehend and use this data effectively, search and recognition (SR) applications will demand more computational power in the future. The inherent speedups that these applications get due to frequency scaling will no longer exist as processor vendors move away from frequency scaling and towards multi-core architectures. Thus, modifications to both the structure of SR applications and current processor architectures are required to meet the computational needs of these workloads. This paper describes a novel hardware acceleration scheme to improve the performance of SR applications. The hardware accelerator relies on Ternary Content-Addressable Memory and some straightforward ISA extensions to deliver a promising speedup of 3.0-4.0 for SR workloads like Template Matching, BLAST, and multi-threaded applications using Software Transactional Memory (STM).","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

World data is increasing rapidly, doubling almost every three years[1][2]. To comprehend and use this data effectively, search and recognition (SR) applications will demand more computational power in the future. The inherent speedups that these applications get due to frequency scaling will no longer exist as processor vendors move away from frequency scaling and towards multi-core architectures. Thus, modifications to both the structure of SR applications and current processor architectures are required to meet the computational needs of these workloads. This paper describes a novel hardware acceleration scheme to improve the performance of SR applications. The hardware accelerator relies on Ternary Content-Addressable Memory and some straightforward ISA extensions to deliver a promising speedup of 3.0-4.0 for SR workloads like Template Matching, BLAST, and multi-threaded applications using Software Transactional Memory (STM).
加速搜索和识别与TCAM功能单元
世界数据增长迅速,几乎每三年翻一番。为了有效地理解和使用这些数据,搜索和识别(SR)应用程序将在未来需要更多的计算能力。随着处理器供应商从频率缩放转向多核架构,这些应用程序由于频率缩放而获得的固有加速将不再存在。因此,需要修改SR应用程序的结构和当前的处理器架构,以满足这些工作负载的计算需求。本文提出了一种新的硬件加速方案来提高SR应用的性能。硬件加速器依赖于三元内容可寻址内存和一些简单的ISA扩展,为模板匹配、BLAST和使用软件事务性内存(STM)的多线程应用程序等SR工作负载提供3.0-4.0的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信