Product defect prediction model

A. M. Vladu, S. S. Iliescu, I. Fagarasan
{"title":"Product defect prediction model","authors":"A. M. Vladu, S. S. Iliescu, I. Fagarasan","doi":"10.1109/SACI.2011.5873055","DOIUrl":null,"url":null,"abstract":"The prediction of software reliability can determine the current reliability of a product, using statistical techniques based on the failures data, obtained during testing or system usability. Software reliability growth models attempt to predict the number of defect using a correlation between exponential function and defect data. The purpose of this paper is to study the evolution of a real-life product over three releases, using the Rayleigh function in order to predict the number of defects. Our paper offers two possibilities for computing the model parameters, and then we should be able to decide which is better and what can be improved. Results from this study will be used to determine which approach is best to be used.","PeriodicalId":334381,"journal":{"name":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2011.5873055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The prediction of software reliability can determine the current reliability of a product, using statistical techniques based on the failures data, obtained during testing or system usability. Software reliability growth models attempt to predict the number of defect using a correlation between exponential function and defect data. The purpose of this paper is to study the evolution of a real-life product over three releases, using the Rayleigh function in order to predict the number of defects. Our paper offers two possibilities for computing the model parameters, and then we should be able to decide which is better and what can be improved. Results from this study will be used to determine which approach is best to be used.
产品缺陷预测模型
软件可靠性预测可以利用基于测试或系统可用性期间获得的故障数据的统计技术来确定产品的当前可靠性。软件可靠性增长模型试图利用指数函数和缺陷数据之间的相关性来预测缺陷的数量。本文的目的是研究一个真实产品在三个版本中的演变,使用Rayleigh函数来预测缺陷的数量。本文提供了两种计算模型参数的可能性,以便我们能够决定哪一种更好,哪一种可以改进。这项研究的结果将用于确定哪种方法是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信