{"title":"Data-Width-Driven Power Gating of Integer Arithmetic Circuits","authors":"T. Hoang, P. Larsson-Edefors","doi":"10.1109/ISVLSI.2012.59","DOIUrl":null,"url":null,"abstract":"When performing narrow-width computations, power gating of unused arithmetic circuit portions can significantly reduce leakage power. We deploy coarse-grain power gating in 32-bit integer arithmetic circuits that frequently will operate on narrow-width data. Our contributions include a design framework that automatically implements coarse-grain power-gated arithmetic circuits considering a narrow-width input data mode, and an analysis of the impact of circuit architecture on the efficiency of this data-width-driven power gating scheme. As an example, with a performance penalty of 6.7%, coarse-grain power gating of a 45-nm 32-bit multiplier is demonstrated to yield an 11.6× static leakage energy reduction per 8×8-bit operation.","PeriodicalId":398850,"journal":{"name":"2012 IEEE Computer Society Annual Symposium on VLSI","volume":"38 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2012.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
When performing narrow-width computations, power gating of unused arithmetic circuit portions can significantly reduce leakage power. We deploy coarse-grain power gating in 32-bit integer arithmetic circuits that frequently will operate on narrow-width data. Our contributions include a design framework that automatically implements coarse-grain power-gated arithmetic circuits considering a narrow-width input data mode, and an analysis of the impact of circuit architecture on the efficiency of this data-width-driven power gating scheme. As an example, with a performance penalty of 6.7%, coarse-grain power gating of a 45-nm 32-bit multiplier is demonstrated to yield an 11.6× static leakage energy reduction per 8×8-bit operation.