N. Gaspard, S. Jagannathan, Z. Diggins, M. Mccurdy, T. D. Loveless, B. Bhuva, L. Massengill, W. T. Holman, T. Oates, Y. Fang, S. Wen, R. Wong, K. Lilja, M. Bounasser
{"title":"Estimation of hardened flip-flop neutron soft error rates using SRAM multiple-cell upset data in bulk CMOS","authors":"N. Gaspard, S. Jagannathan, Z. Diggins, M. Mccurdy, T. D. Loveless, B. Bhuva, L. Massengill, W. T. Holman, T. Oates, Y. Fang, S. Wen, R. Wong, K. Lilja, M. Bounasser","doi":"10.1109/IRPS.2013.6532113","DOIUrl":null,"url":null,"abstract":"Experimental neutron single-event error rates of 28-and 40-nm bulk CMOS hardened flip-flops are compared to various hardened flip-flop designs in literature. Using published 45-nm SRAM multiple-cell upset data, it is shown that the error rate of hardened flip-flop designs can be estimated by using the minimum sensitive node spacing from the flip-flop layout. Experimental data show that regardless of circuit topology of a hardened flip-flop, the redundant storage node spacing dominates neutron soft-error rates.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6532113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Experimental neutron single-event error rates of 28-and 40-nm bulk CMOS hardened flip-flops are compared to various hardened flip-flop designs in literature. Using published 45-nm SRAM multiple-cell upset data, it is shown that the error rate of hardened flip-flop designs can be estimated by using the minimum sensitive node spacing from the flip-flop layout. Experimental data show that regardless of circuit topology of a hardened flip-flop, the redundant storage node spacing dominates neutron soft-error rates.