Detection of compound structures using multiple hierarchical segmentations

H. G. Akcay, S. Aksoy
{"title":"Detection of compound structures using multiple hierarchical segmentations","authors":"H. G. Akcay, S. Aksoy","doi":"10.1109/SIU.2014.6830666","DOIUrl":null,"url":null,"abstract":"In this paper, our aim is to discover compound structures comprised of regions obtained from hierarchical segmentations of multiple spectral bands. A region adjacency graph is constructed by representing regions as vertices and connecting these vertices that are spatially close by edges. Then, dissimilarities between neighboring vertices are computed using statistical and structural features, and are assigned as edge weights. Finally, the compound structures are detected by extracting the connected components of the graph whose edges with relatively large weights are removed. Experiments using WorldView-2 images show that grouping of these vertices according to different criteria can extract high-level compound structures that cannot be obtained using traditional techniques.","PeriodicalId":193438,"journal":{"name":"2012 IEEE International Geoscience and Remote Sensing Symposium","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, our aim is to discover compound structures comprised of regions obtained from hierarchical segmentations of multiple spectral bands. A region adjacency graph is constructed by representing regions as vertices and connecting these vertices that are spatially close by edges. Then, dissimilarities between neighboring vertices are computed using statistical and structural features, and are assigned as edge weights. Finally, the compound structures are detected by extracting the connected components of the graph whose edges with relatively large weights are removed. Experiments using WorldView-2 images show that grouping of these vertices according to different criteria can extract high-level compound structures that cannot be obtained using traditional techniques.
复合结构的多重分层分割检测
在本文中,我们的目的是发现由多个光谱波段的分层分割得到的区域组成的复合结构。区域邻接图是通过将区域表示为顶点并将这些空间上靠边靠近的顶点连接起来来构建的。然后,利用统计特征和结构特征计算相邻顶点之间的不相似度,并将其作为边缘权重。最后,通过提取图中权重较大的边的连通分量来检测复合结构。使用WorldView-2图像进行的实验表明,根据不同的标准对这些顶点进行分组可以提取传统技术无法获得的高层复合结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信