Stokes drift and its discontents

J. Vanneste, W. Young
{"title":"Stokes drift and its discontents","authors":"J. Vanneste, W. Young","doi":"10.1098/rsta.2021.0032","DOIUrl":null,"url":null,"abstract":"The Stokes velocity uS, defined approximately by Stokes (1847, Trans. Camb. Philos. Soc., 8, 441–455.), and exactly via the Generalized Lagrangian Mean, is divergent even in an incompressible fluid. We show that the Stokes velocity can be naturally decomposed into a solenoidal component, usolS, and a remainder that is small for waves with slowly varying amplitudes. We further show that usolS arises as the sole Stokes velocity when the Lagrangian mean flow is suitably redefined to ensure its exact incompressibility. The construction is an application of Soward & Roberts’s glm theory (2010, J. Fluid Mech., 661, 45–72. (doi:10.1017/S0022112010002867)) which we specialize to surface gravity waves and implement effectively using a Lie series expansion. We further show that the corresponding Lagrangian-mean momentum equation is formally identical to the Craik–Leibovich (CL) equation with usolS replacing uS, and we discuss the form of the Stokes pumping associated with both uS and usolS. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Stokes velocity uS, defined approximately by Stokes (1847, Trans. Camb. Philos. Soc., 8, 441–455.), and exactly via the Generalized Lagrangian Mean, is divergent even in an incompressible fluid. We show that the Stokes velocity can be naturally decomposed into a solenoidal component, usolS, and a remainder that is small for waves with slowly varying amplitudes. We further show that usolS arises as the sole Stokes velocity when the Lagrangian mean flow is suitably redefined to ensure its exact incompressibility. The construction is an application of Soward & Roberts’s glm theory (2010, J. Fluid Mech., 661, 45–72. (doi:10.1017/S0022112010002867)) which we specialize to surface gravity waves and implement effectively using a Lie series expansion. We further show that the corresponding Lagrangian-mean momentum equation is formally identical to the Craik–Leibovich (CL) equation with usolS replacing uS, and we discuss the form of the Stokes pumping associated with both uS and usolS. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.
斯托克斯漂流及其不满
斯托克斯速度uS,由斯托克斯(1847)近似定义。剑桥市费罗斯。Soc。),并且完全通过广义拉格朗日均值,即使在不可压缩流体中也是发散的。我们表明,斯托克斯速度可以自然地分解为螺线线分量,usolS,以及对于振幅变化缓慢的波来说很小的余量。我们进一步证明,当拉格朗日平均流被适当地重新定义以确保其精确的不可压缩性时,usolS作为唯一的斯托克斯速度出现。该结构是Soward & Roberts的glm理论(2010,J.流体力学)的一种应用。, 661, 45-72。(doi:10.1017/S0022112010002867)))),我们专门研究表面重力波,并使用李氏级数展开有效地实现。进一步证明了相应的拉格朗日平均动量方程在形式上与用usolS代替uS的Craik-Leibovich (CL)方程相同,并讨论了与usolS和usolS相关的Stokes泵浦的形式。本文是主题问题“物理流体动力学中的数学问题(第一部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信