Optical Fiber Angle Sensors for the PrHand Prosthesis: Development and Application in Grasp Types Recognition with Machine Learning

Laura De Arco, M. Pontes, M. Segatto, M. Monteiro, C. Cifuentes, C. Díaz
{"title":"Optical Fiber Angle Sensors for the PrHand Prosthesis: Development and Application in Grasp Types Recognition with Machine Learning","authors":"Laura De Arco, M. Pontes, M. Segatto, M. Monteiro, C. Cifuentes, C. Díaz","doi":"10.1109/LAEDC54796.2022.9908232","DOIUrl":null,"url":null,"abstract":"This work presents the instrumentation of the PrHand upper-limb prosthesis with optical fiber sensors to measure the angle of the proximal interphalangeal joint. The angle sensors are based on bending-induced loss and are fabricated with polymer optical fiber (POF). The finger angle information is used in a k-Nearest Neighbor (k-NN) machine learning algorithm for grasp recognition. Four kinds of grasp are evaluated: hook grip, spherical grip, tripod pinch, and cylindrical grip, with three objects each. As mentioned in the algorithm validation, it is essential to note: The average accuracy was 92.81 %.","PeriodicalId":276855,"journal":{"name":"2022 IEEE Latin American Electron Devices Conference (LAEDC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin American Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC54796.2022.9908232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work presents the instrumentation of the PrHand upper-limb prosthesis with optical fiber sensors to measure the angle of the proximal interphalangeal joint. The angle sensors are based on bending-induced loss and are fabricated with polymer optical fiber (POF). The finger angle information is used in a k-Nearest Neighbor (k-NN) machine learning algorithm for grasp recognition. Four kinds of grasp are evaluated: hook grip, spherical grip, tripod pinch, and cylindrical grip, with three objects each. As mentioned in the algorithm validation, it is essential to note: The average accuracy was 92.81 %.
PrHand义肢用光纤角度传感器:在机器学习抓取类型识别中的发展与应用
这项工作介绍了带有光纤传感器的PrHand上肢假体的仪器仪表来测量近端指间关节的角度。该角度传感器基于弯曲损耗原理,采用聚合物光纤(POF)制造。手指角度信息用于k-最近邻(k-NN)机器学习算法进行抓握识别。评估了四种抓取方式:钩式抓取、球形抓取、三脚架抓取和圆柱形抓取,每种抓取方式有三个对象。正如在算法验证中提到的,需要注意的是:平均准确率为92.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信