Machine Learning Approaches for Process Optimization

Yusuke Suzuki, S. Iwashita, Toshiki Sato, Hitoshi Yonemichi, Hironori Moki, T. Moriya
{"title":"Machine Learning Approaches for Process Optimization","authors":"Yusuke Suzuki, S. Iwashita, Toshiki Sato, Hitoshi Yonemichi, Hironori Moki, T. Moriya","doi":"10.1109/ISSM.2018.8651142","DOIUrl":null,"url":null,"abstract":"We have optimized semiconductor manufacturing processes by machine learning (ML) approaches. The optimization of the nonuniformity of plasma enhanced atomic layer deposition (PEALD) film thickness, the PEALD film stress, the carbon etching profile and the PEALD film thickness profile have been successfully achieved the targets. In some cases (stress and thickness nonuniformity optimization), the ML approach is found to be more powerful than the knowledgeable engineers. The authors showed the effectiveness of ML approach for the semiconductor manufacturing processes.","PeriodicalId":262428,"journal":{"name":"2018 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM.2018.8651142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We have optimized semiconductor manufacturing processes by machine learning (ML) approaches. The optimization of the nonuniformity of plasma enhanced atomic layer deposition (PEALD) film thickness, the PEALD film stress, the carbon etching profile and the PEALD film thickness profile have been successfully achieved the targets. In some cases (stress and thickness nonuniformity optimization), the ML approach is found to be more powerful than the knowledgeable engineers. The authors showed the effectiveness of ML approach for the semiconductor manufacturing processes.
过程优化的机器学习方法
我们通过机器学习(ML)方法优化了半导体制造工艺。对等离子体增强原子层沉积(PEALD)膜厚度的非均匀性、膜应力、碳刻蚀轮廓和PEALD膜厚度轮廓进行了优化。在某些情况下(应力和厚度非均匀性优化),ML方法被发现比知识渊博的工程师更强大。作者展示了机器学习方法在半导体制造过程中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信