Hen-Wei Huang, M. Sakar, K. Riederer, Naveen Shamsudhin, A. Petruska, S. Pané, B. Nelson
{"title":"Magnetic microrobots with addressable shape control","authors":"Hen-Wei Huang, M. Sakar, K. Riederer, Naveen Shamsudhin, A. Petruska, S. Pané, B. Nelson","doi":"10.1109/ICRA.2016.7487315","DOIUrl":null,"url":null,"abstract":"Shape shifting soft microrobots are generated from self-folding hydrogel bilayer structures. The folding conditions are analyzed to develop an optimal strategy for producing desired three-dimensional shapes. We present two different methods for programming magnetization in these microrobots that are variant and invariant to folding. The microrobots can be navigated through user-defined trajectories using rotating magnetic fields, and the morphing in response to temperature changes can be tuned for adaptive behavior. On-demand modulation of the mobility of individual microrobots is demonstrated by morphing their shape using selective near infrared light (NIR) exposure.","PeriodicalId":200117,"journal":{"name":"2016 IEEE International Conference on Robotics and Automation (ICRA)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2016.7487315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Shape shifting soft microrobots are generated from self-folding hydrogel bilayer structures. The folding conditions are analyzed to develop an optimal strategy for producing desired three-dimensional shapes. We present two different methods for programming magnetization in these microrobots that are variant and invariant to folding. The microrobots can be navigated through user-defined trajectories using rotating magnetic fields, and the morphing in response to temperature changes can be tuned for adaptive behavior. On-demand modulation of the mobility of individual microrobots is demonstrated by morphing their shape using selective near infrared light (NIR) exposure.