A scalable 3D heterogeneous multi-core processor with inductive-coupling thruchip interface

N. Miura, Yusuke Koizumi, Eiichi Sasaki, Yasuhiro Take, Hiroki Matsutani, T. Kuroda, H. Amano, Ryuichi Sakamoto, M. Namiki, K. Usami, Masaaki Kondo, Hiroshi Nakamura
{"title":"A scalable 3D heterogeneous multi-core processor with inductive-coupling thruchip interface","authors":"N. Miura, Yusuke Koizumi, Eiichi Sasaki, Yasuhiro Take, Hiroki Matsutani, T. Kuroda, H. Amano, Ryuichi Sakamoto, M. Namiki, K. Usami, Masaaki Kondo, Hiroshi Nakamura","doi":"10.1109/CoolChips.2013.6547916","DOIUrl":null,"url":null,"abstract":"A scalable heterogeneous multi-core processor is developed. 3D heterogeneous chip stacking of a general-purpose CPU and reconfigurable multi-core accelerators improves computational energy efficiency by proper task assignment and massive parallel computing. The stacked chips interconnect through a scalable 3D Network on Chip (NoC). By simply changing the number of stacked accelerator chips, processor parallelism can be widely scaled. In combination with Dynamic Voltage and Frequency Scaling (DVFS), the energy efficiency can be optimized for various performance requirements. No design change is needed, and hence no additional Non-Recurring Engineering (NRE) cost. An inductive-coupling ThruChip Interface (TCI) is applied to stacked-chip communications, forming a low-cost and robust high-speed 3D NoC. A prototype demonstration system has been developed with 65nm CMOS test chips. Successful system operations including 10-hours continuous Linux OS operation are confirmed for the first time.","PeriodicalId":340576,"journal":{"name":"2013 IEEE COOL Chips XVI","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE COOL Chips XVI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2013.6547916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A scalable heterogeneous multi-core processor is developed. 3D heterogeneous chip stacking of a general-purpose CPU and reconfigurable multi-core accelerators improves computational energy efficiency by proper task assignment and massive parallel computing. The stacked chips interconnect through a scalable 3D Network on Chip (NoC). By simply changing the number of stacked accelerator chips, processor parallelism can be widely scaled. In combination with Dynamic Voltage and Frequency Scaling (DVFS), the energy efficiency can be optimized for various performance requirements. No design change is needed, and hence no additional Non-Recurring Engineering (NRE) cost. An inductive-coupling ThruChip Interface (TCI) is applied to stacked-chip communications, forming a low-cost and robust high-speed 3D NoC. A prototype demonstration system has been developed with 65nm CMOS test chips. Successful system operations including 10-hours continuous Linux OS operation are confirmed for the first time.
具有电感耦合通片接口的可扩展三维异构多核处理器
研制了一种可扩展的异构多核处理器。通用CPU和可重构多核加速器的三维异构芯片堆叠通过合理的任务分配和大规模并行计算提高了计算能效。堆叠的芯片通过可扩展的3D片上网络(NoC)互连。通过简单地改变堆叠的加速器芯片的数量,处理器的并行性可以被广泛地扩展。结合动态电压和频率缩放(DVFS),可以优化能源效率,以满足各种性能要求。不需要更改设计,因此不需要额外的非重复工程(NRE)成本。将电感耦合thrchip接口(TCI)应用于堆叠芯片通信,形成低成本、鲁棒的高速3D NoC。采用65纳米CMOS测试芯片开发了一个原型演示系统。首次确认系统操作成功,包括连续操作10小时的Linux操作系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信