A Multi-Model MLLE-PCA Method for Unstable Industrial Process Monitoring

Tian Fang, Dongmei Fu
{"title":"A Multi-Model MLLE-PCA Method for Unstable Industrial Process Monitoring","authors":"Tian Fang, Dongmei Fu","doi":"10.1109/ICMRA.2018.8490573","DOIUrl":null,"url":null,"abstract":"It is quite a challenge to monitor and diagnose an unstable industrial process, because the changes of the industrial process bring the local structure changes of process data. Traditional process monitoring methods train and model the process as a whole. Such a model shows the overall structure of the process data, but ignore the local characteristics. In order to construct the local characteristics of the unstable process, Modified Locally Linear Embedding (MLLE) is introduced into the PCA process monitoring to reveal the local data structures. At the same time, to solve the error mapping problem of anomaly points, this paper introduces a multi-model framework and constructs a new Multi-Model MLLE-PCA method for unstable industrial process monitoring. Compared with the traditional method, the proposed method performances better in simulation.","PeriodicalId":190744,"journal":{"name":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRA.2018.8490573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is quite a challenge to monitor and diagnose an unstable industrial process, because the changes of the industrial process bring the local structure changes of process data. Traditional process monitoring methods train and model the process as a whole. Such a model shows the overall structure of the process data, but ignore the local characteristics. In order to construct the local characteristics of the unstable process, Modified Locally Linear Embedding (MLLE) is introduced into the PCA process monitoring to reveal the local data structures. At the same time, to solve the error mapping problem of anomaly points, this paper introduces a multi-model framework and constructs a new Multi-Model MLLE-PCA method for unstable industrial process monitoring. Compared with the traditional method, the proposed method performances better in simulation.
不稳定工业过程监测的多模型MLLE-PCA方法
由于工业过程的变化会引起过程数据局部结构的变化,因此对不稳定的工业过程进行监测和诊断是一个很大的挑战。传统的过程监控方法是对整个过程进行训练和建模。这种模型显示了过程数据的整体结构,但忽略了局部特征。为了构造不稳定过程的局部特征,在主成分分析过程监测中引入了改进的局部线性嵌入(MLLE)来揭示局部数据结构。同时,为了解决异常点的误差映射问题,本文引入了多模型框架,构建了一种新的多模型MLLE-PCA方法用于不稳定工业过程监测。与传统方法相比,该方法具有更好的仿真性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信