Evaluating a Machine Learning-based Approach for Cache Configuration

Lucas D. X. Ribeiro, R. Jacobi, F. Júnior, Jones Yudi da Silva, I.S. Silva
{"title":"Evaluating a Machine Learning-based Approach for Cache Configuration","authors":"Lucas D. X. Ribeiro, R. Jacobi, F. Júnior, Jones Yudi da Silva, I.S. Silva","doi":"10.1109/LASCAS53948.2022.9789040","DOIUrl":null,"url":null,"abstract":"As the systems perform progressively complex tasks, the search for energy efficiency in computational systems is constantly increasing. The cache memory has a fundamental role in this issue. Through dynamic cache reconfiguration techniques, it is possible to obtain an optimal cache configuration that minimizes the impacts of energy losses. To achieve this goal, a precise selection of cache parameters plays a fundamental role. In this work, a machine learning-based approach is evaluated to predict the optimal cache configuration for different applications considering their dynamic instructions and a variety of cache parameters, followed by experiments showing that using a smaller set of application instructions it is already possible to obtain good classification results from the proposed model. The results show that the model obtains an accuracy of 96.19% using the complete set of RISC-V instructions and 96.33% accuracy using the memory instructions set, a more concise set of instructions that directly affect the cache power model, besides decreasing the model complexity.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the systems perform progressively complex tasks, the search for energy efficiency in computational systems is constantly increasing. The cache memory has a fundamental role in this issue. Through dynamic cache reconfiguration techniques, it is possible to obtain an optimal cache configuration that minimizes the impacts of energy losses. To achieve this goal, a precise selection of cache parameters plays a fundamental role. In this work, a machine learning-based approach is evaluated to predict the optimal cache configuration for different applications considering their dynamic instructions and a variety of cache parameters, followed by experiments showing that using a smaller set of application instructions it is already possible to obtain good classification results from the proposed model. The results show that the model obtains an accuracy of 96.19% using the complete set of RISC-V instructions and 96.33% accuracy using the memory instructions set, a more concise set of instructions that directly affect the cache power model, besides decreasing the model complexity.
评估基于机器学习的缓存配置方法
随着系统执行越来越复杂的任务,对计算系统能源效率的研究也在不断增加。高速缓存在这个问题中起着重要的作用。通过动态缓存重新配置技术,可以获得最小化能量损失影响的最佳缓存配置。为了实现这一目标,精确选择缓存参数起着至关重要的作用。在这项工作中,我们评估了一种基于机器学习的方法来预测不同应用程序的最佳缓存配置,考虑到它们的动态指令和各种缓存参数,随后的实验表明,使用更小的应用指令集,已经可以从所提出的模型中获得良好的分类结果。结果表明,该模型使用完整的RISC-V指令集获得了96.19%的准确率,使用内存指令集获得了96.33%的准确率,内存指令集是一组更简洁的指令集,直接影响了缓存功率模型,同时降低了模型的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信