CDS Option Valuation with Double-Exponential Jumps

R. Bhar, Nedim Handzic
{"title":"CDS Option Valuation with Double-Exponential Jumps","authors":"R. Bhar, Nedim Handzic","doi":"10.2139/ssrn.3117910","DOIUrl":null,"url":null,"abstract":"We demonstrate how the Double-Exponential Jump-Diffusion (DEJD) process can be used to value iTraxx CDS options based on historical returns of the underlying CDS index. In the first step we find Maximum Likelihood estimates for the volatility of the normal component of returns and the Poisson frequencies and mean sizes of upward and downward exponential jumps. In results similar to Ramezani and Zeng’s (2006) application of DEJD to equities, we find that the DEJD provides a better fit than either a normal or single-jump specification. We take the additional step of using parameter estimates as inputs to the semi-closed European option pricing formula proposed by Kou (2002) under DEJD. We compare the model and market option prices across strikes and find that both the level and shape of the implied volatility smile match closely. Our findings suggest that the DEJD provides a realistic description of the joint role of positive and negative economic surprises in credit markets. In addition, the use of Maximum Likelihood with the option pricing model is a practical way to analyse divergence between realised and market-implied distributions of credit returns, and can be used to check pricing.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3117910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate how the Double-Exponential Jump-Diffusion (DEJD) process can be used to value iTraxx CDS options based on historical returns of the underlying CDS index. In the first step we find Maximum Likelihood estimates for the volatility of the normal component of returns and the Poisson frequencies and mean sizes of upward and downward exponential jumps. In results similar to Ramezani and Zeng’s (2006) application of DEJD to equities, we find that the DEJD provides a better fit than either a normal or single-jump specification. We take the additional step of using parameter estimates as inputs to the semi-closed European option pricing formula proposed by Kou (2002) under DEJD. We compare the model and market option prices across strikes and find that both the level and shape of the implied volatility smile match closely. Our findings suggest that the DEJD provides a realistic description of the joint role of positive and negative economic surprises in credit markets. In addition, the use of Maximum Likelihood with the option pricing model is a practical way to analyse divergence between realised and market-implied distributions of credit returns, and can be used to check pricing.
具有双指数跳跃的CDS期权估值
我们演示了如何使用双指数跳跃扩散(DEJD)过程基于基础CDS指数的历史回报对iTraxx CDS期权进行估值。在第一步中,我们找到了收益的正态分量的波动率的极大似然估计,以及向上和向下指数跳跃的泊松频率和平均大小。在类似于Ramezani和Zeng(2006)将DEJD应用于股票的结果中,我们发现DEJD比普通规范或单跳规范提供了更好的拟合。我们采取了额外的步骤,将参数估计作为输入到Kou(2002)在DEJD下提出的半封闭欧式期权定价公式中。我们比较了模型和市场期权价格,发现隐含波动率的水平和形状都非常吻合。我们的研究结果表明,DEJD对信贷市场中积极和消极经济意外的共同作用提供了现实的描述。此外,在期权定价模型中使用最大似然是分析信贷收益的已实现分布和市场隐含分布之间差异的一种实用方法,并可用于检查定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信