Abdullah Hylamia, M. Spanghero, Ambuj Varshney, T. Voigt, Panagiotis Papadimitratos
{"title":"Security on Harvested Power","authors":"Abdullah Hylamia, M. Spanghero, Ambuj Varshney, T. Voigt, Panagiotis Papadimitratos","doi":"10.1145/3212480.3226105","DOIUrl":null,"url":null,"abstract":"Security mechanisms for battery-free devices have to operate under severe energy constraints relying on harvested energy. This is challenging, as the energy harvested from the ambient environment is usually scarce, intermittent and unpredictable. One of the challenges for developing security mechanisms for such settings is the lack of hardware platforms that recreate energy harvesting conditions experienced on a battery-free sensor node. In this demonstration, we present an energy harvesting security (EHS) platform that enables the development of security algorithms for battery-free sensors. Our results demonstrate that our platform is able to harvest sufficient energy from indoor lighting to support several widely used cryptography algorithms.","PeriodicalId":267134,"journal":{"name":"Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212480.3226105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Security mechanisms for battery-free devices have to operate under severe energy constraints relying on harvested energy. This is challenging, as the energy harvested from the ambient environment is usually scarce, intermittent and unpredictable. One of the challenges for developing security mechanisms for such settings is the lack of hardware platforms that recreate energy harvesting conditions experienced on a battery-free sensor node. In this demonstration, we present an energy harvesting security (EHS) platform that enables the development of security algorithms for battery-free sensors. Our results demonstrate that our platform is able to harvest sufficient energy from indoor lighting to support several widely used cryptography algorithms.