Evolutionary multiobjective design of combinational logic circuits

C. C. Coello, A. H. Aguirre, B. Buckles
{"title":"Evolutionary multiobjective design of combinational logic circuits","authors":"C. C. Coello, A. H. Aguirre, B. Buckles","doi":"10.1109/EH.2000.869354","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an evolutionary multiobjective optimization approach to design combinational logic circuits. The idea is to use a population-based technique that considers outputs of a circuit as equality constraints that we aim to satisfy. A small sub-population is assigned to each objective. After one of these objectives is satisfied, its corresponding sub-population is merged with the rest of the individuals in what becomes a joint effort to minimize the total amount of mismatches produced (between the encoded circuit and the truth table). Once a feasible individual is found, all individuals cooperate to minimize its number of gates. The approach seems to reduce the amount of computer resources required to design combinational logic circuits, when compared to our previous research in this area.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

In this paper, we propose an evolutionary multiobjective optimization approach to design combinational logic circuits. The idea is to use a population-based technique that considers outputs of a circuit as equality constraints that we aim to satisfy. A small sub-population is assigned to each objective. After one of these objectives is satisfied, its corresponding sub-population is merged with the rest of the individuals in what becomes a joint effort to minimize the total amount of mismatches produced (between the encoded circuit and the truth table). Once a feasible individual is found, all individuals cooperate to minimize its number of gates. The approach seems to reduce the amount of computer resources required to design combinational logic circuits, when compared to our previous research in this area.
组合逻辑电路的进化多目标设计
在本文中,我们提出一种进化的多目标优化方法来设计组合逻辑电路。这个想法是使用基于人口的技术,将电路的输出视为我们要满足的相等约束。每个目标都分配了一个小的子群体。在其中一个目标得到满足后,其相应的子种群与其他个体合并,成为共同努力,以尽量减少产生的不匹配总数(在编码电路和真值表之间)。一旦找到一个可行的个体,所有个体就会合作使其门的数量最小化。与我们之前在该领域的研究相比,这种方法似乎减少了设计组合逻辑电路所需的计算机资源的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信