Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms

D. Zarpalas, P. Gkontra, P. Daras, N. Maglaveras
{"title":"Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms","authors":"D. Zarpalas, P. Gkontra, P. Daras, N. Maglaveras","doi":"10.1109/ISBI.2013.6556410","DOIUrl":null,"url":null,"abstract":"This paper presents a novel 3D segmentation framework for structures with spatially varying boundary properties, such as the hippocampus (HC). The proposed method is based on Active Contour Models (ACMs) built on top of the multi-atlas concept. We propose the incorporation of an Adaptive Gradient Distribution on the Boundary map (AGDB) into the ACM framework. AGDB, by being adapted to the evolving contour, constantly redefines, at a voxel level and at each contour evolution, the degree of contribution of the image information and the prior information to the energy minimization. The proposed segmentation scheme was tested for HC segmentation using the publicly available IBSR database.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a novel 3D segmentation framework for structures with spatially varying boundary properties, such as the hippocampus (HC). The proposed method is based on Active Contour Models (ACMs) built on top of the multi-atlas concept. We propose the incorporation of an Adaptive Gradient Distribution on the Boundary map (AGDB) into the ACM framework. AGDB, by being adapted to the evolving contour, constantly redefines, at a voxel level and at each contour evolution, the degree of contribution of the image information and the prior information to the energy minimization. The proposed segmentation scheme was tested for HC segmentation using the publicly available IBSR database.
通过基于梯度的可靠性图进行海马分割,用于ACM能量项的局部混合
本文提出了一种新的三维分割框架,用于具有空间变化边界属性的结构,如海马体(HC)。该方法基于建立在多图谱概念之上的活动轮廓模型(ACMs)。我们建议在ACM框架中加入边界图上的自适应梯度分布(AGDB)。AGDB通过适应不断变化的轮廓,在体素级和每次轮廓演变中不断重新定义图像信息和先验信息对能量最小化的贡献程度。利用公开的IBSR数据库对所提出的分割方案进行了HC分割测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信