Tianyi Li, G. Convertino, Ranjeet Kumar Tayi, Shima Kazerooni
{"title":"What data should I protect?: recommender and planning support for data security analysts","authors":"Tianyi Li, G. Convertino, Ranjeet Kumar Tayi, Shima Kazerooni","doi":"10.1145/3301275.3302294","DOIUrl":null,"url":null,"abstract":"Major breaches of sensitive company data, as for Facebook's 50 million user accounts in 2018 or Equifax's 143 million user accounts in 2017, are showing the limitations of reactive data security technologies. Companies and government organizations are turning to proactive data security technologies that secure sensitive data at source. However, data security analysts still face two fundamental challenges in data protection decisions: 1) the information overload from the growing number of data repositories and protection techniques to consider; 2) the optimization of protection plans given the current goals and available resources in the organization. In this work, we propose an intelligent user interface for security analysts that recommends what data to protect, visualizes simulated protection impact, and helps build protection plans. In a domain with limited access to expert users and practices, we elicited user requirements from security analysts in industry and modeled data risks based on architectural and conceptual attributes. Our preliminary evaluation suggests that the design improves the understanding and trust of the recommended protections and helps convert risk information in protection plans.","PeriodicalId":153096,"journal":{"name":"Proceedings of the 24th International Conference on Intelligent User Interfaces","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301275.3302294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Major breaches of sensitive company data, as for Facebook's 50 million user accounts in 2018 or Equifax's 143 million user accounts in 2017, are showing the limitations of reactive data security technologies. Companies and government organizations are turning to proactive data security technologies that secure sensitive data at source. However, data security analysts still face two fundamental challenges in data protection decisions: 1) the information overload from the growing number of data repositories and protection techniques to consider; 2) the optimization of protection plans given the current goals and available resources in the organization. In this work, we propose an intelligent user interface for security analysts that recommends what data to protect, visualizes simulated protection impact, and helps build protection plans. In a domain with limited access to expert users and practices, we elicited user requirements from security analysts in industry and modeled data risks based on architectural and conceptual attributes. Our preliminary evaluation suggests that the design improves the understanding and trust of the recommended protections and helps convert risk information in protection plans.