Molecular cellular networks: A non von Neumann architecture for molecular electronics

C. Lent, K. Henderson, S. Kandel, S. Corcelli, G. Snider, A. Orlov, P. Kogge, M. Niemier, Ryan C. Brown, J. Christie, Natalie A. Wasio, Rebecca C. Quardokus, R. P. Forrest, Jacob P. Peterson, Angela Silski, David A. Turner, E. Blair, Yuhui Lu
{"title":"Molecular cellular networks: A non von Neumann architecture for molecular electronics","authors":"C. Lent, K. Henderson, S. Kandel, S. Corcelli, G. Snider, A. Orlov, P. Kogge, M. Niemier, Ryan C. Brown, J. Christie, Natalie A. Wasio, Rebecca C. Quardokus, R. P. Forrest, Jacob P. Peterson, Angela Silski, David A. Turner, E. Blair, Yuhui Lu","doi":"10.1109/ICRC.2016.7738699","DOIUrl":null,"url":null,"abstract":"The two fundamental limitations of the present computing paradigm are power dissipation from transistor switching and the architectural von Neumann bottleneck that segregates processing from memory. We examine a cellular architecture which radically intermixes memory and processing, and which is based on a transistor-less approach to representing binary information using the arrangement of charge within the molecule. Representing bits by molecular configuration, rather than a current switch, yields the limits of functional density and low power dissipation. Matching a new computational element to a new architectural framework could enable general purpose computing to evolve along a new roadmap.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The two fundamental limitations of the present computing paradigm are power dissipation from transistor switching and the architectural von Neumann bottleneck that segregates processing from memory. We examine a cellular architecture which radically intermixes memory and processing, and which is based on a transistor-less approach to representing binary information using the arrangement of charge within the molecule. Representing bits by molecular configuration, rather than a current switch, yields the limits of functional density and low power dissipation. Matching a new computational element to a new architectural framework could enable general purpose computing to evolve along a new roadmap.
分子细胞网络:分子电子学的非冯·诺依曼结构
当前计算范式的两个基本限制是晶体管开关的功耗和将处理与存储隔离开来的架构冯·诺伊曼瓶颈。我们研究了一种细胞结构,它从根本上混合了存储和处理,并且基于使用分子内电荷排列来表示二进制信息的无晶体管方法。用分子结构而不是电流开关来表示比特,会产生功能密度和低功耗的限制。将新的计算元素与新的体系结构框架相匹配,可以使通用计算沿着新的路线图发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信