Adaptive optics calibration for a wide-field microscope

SPIE MOEMS-MEMS Pub Date : 2008-02-07 DOI:10.1117/12.769431
J. Castillo, T. Bifano
{"title":"Adaptive optics calibration for a wide-field microscope","authors":"J. Castillo, T. Bifano","doi":"10.1117/12.769431","DOIUrl":null,"url":null,"abstract":"Adaptive optics calibration of a novel wide-field scanning microscope is described, comparing relevant parameters for several optimization techniques. Specifically, comparisons of the optimization algorithm, image quality metrics, and the calibration image target are detailed. It is shown that stochastic parallel gradient descent (SPGD) algorithm using image intensity as a metric provides robust, repeatable system optimization. Results also show that optimization performance improves when the feature sizes on the calibration target approach the diffraction limit and are more uniformly distributed. This paper further compares stochastic, image-based optimization performance to that of conventional adaptive optics optimization with a point source object and a Shack Hartmann wavefront sensor.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE MOEMS-MEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.769431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Adaptive optics calibration of a novel wide-field scanning microscope is described, comparing relevant parameters for several optimization techniques. Specifically, comparisons of the optimization algorithm, image quality metrics, and the calibration image target are detailed. It is shown that stochastic parallel gradient descent (SPGD) algorithm using image intensity as a metric provides robust, repeatable system optimization. Results also show that optimization performance improves when the feature sizes on the calibration target approach the diffraction limit and are more uniformly distributed. This paper further compares stochastic, image-based optimization performance to that of conventional adaptive optics optimization with a point source object and a Shack Hartmann wavefront sensor.
宽视场显微镜的自适应光学校准
介绍了一种新型宽视场扫描显微镜的自适应光学定标,比较了几种优化技术的相关参数。具体而言,对优化算法、图像质量指标和标定图像目标进行了比较。结果表明,以图像强度为度量的随机并行梯度下降(SPGD)算法提供了鲁棒的、可重复的系统优化。结果还表明,当标定目标上的特征尺寸接近衍射极限且分布更加均匀时,优化性能有所提高。本文进一步比较了随机的,基于图像的优化性能与传统的自适应光学优化的点光源目标和夏克哈特曼波前传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信