{"title":"Establishing Trust in NASA’s Artemis Campaign Computer-Human Interface (CHI) Implementation","authors":"George Salazar","doi":"10.1109/SCC57168.2023.00020","DOIUrl":null,"url":null,"abstract":"The NASA Artemis campaign will return humans to the Moon. This time, with the help of commercial and international partners, the campaign's objective is a permanent Moon base. The Moon base infrastructure, including an orbiting station and surface assets, will be developed for astronauts to stay for the long haul to learn to live and work on another planet in preparation for an eventual Humans-to-Mars mission. As the roundtrip communication delays increase in deep space exploration, the crew will need more on-board systems autonomy and functionality to maintain and control the vehicle or habitat. These mission constraints will change the current Earth-based spacecraft to ground control support approach that will demand safer, more efficient, and more effective Computer-Human Interface (CHI) control. For Artemis, CHI is defined as the elements that the crew interfaces with: audio, imagery, lighting, displays, and crew controls subsystems. Understanding how CHI will need to evolve to support deep space missions will be critical for the Artemis campaign –especially crew controls, which is the focus of this paper. How does NASA ensure crew controls are reliable enough to control complex systems and prevent a catastrophic event due to human error–especially when the astronauts could be physiologically and/or psychologically impaired? NASA's approach to mitigating catastrophic hazards in human spaceflight system development such as crew controls, is through a holistic system engineering and Human System Integration (HSI) methodology. This approach focuses on incorporating NASA's Human-Rating Requirements to ensure consideration of human performance characteristics to control and safely recover the crew from hazardous situations. This paper discusses, at a high level, CHI for the Artemis campaign. Next, a discussion of what it means to human-rate a space system crew controls and how trust in CHI begins with the NASA human rating requirements. Finally, a discussion on how systems engineering and the HSI process ensure that crew control implementation incorporates the NASA human-rating requirements.","PeriodicalId":258620,"journal":{"name":"2023 IEEE Space Computing Conference (SCC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Space Computing Conference (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC57168.2023.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The NASA Artemis campaign will return humans to the Moon. This time, with the help of commercial and international partners, the campaign's objective is a permanent Moon base. The Moon base infrastructure, including an orbiting station and surface assets, will be developed for astronauts to stay for the long haul to learn to live and work on another planet in preparation for an eventual Humans-to-Mars mission. As the roundtrip communication delays increase in deep space exploration, the crew will need more on-board systems autonomy and functionality to maintain and control the vehicle or habitat. These mission constraints will change the current Earth-based spacecraft to ground control support approach that will demand safer, more efficient, and more effective Computer-Human Interface (CHI) control. For Artemis, CHI is defined as the elements that the crew interfaces with: audio, imagery, lighting, displays, and crew controls subsystems. Understanding how CHI will need to evolve to support deep space missions will be critical for the Artemis campaign –especially crew controls, which is the focus of this paper. How does NASA ensure crew controls are reliable enough to control complex systems and prevent a catastrophic event due to human error–especially when the astronauts could be physiologically and/or psychologically impaired? NASA's approach to mitigating catastrophic hazards in human spaceflight system development such as crew controls, is through a holistic system engineering and Human System Integration (HSI) methodology. This approach focuses on incorporating NASA's Human-Rating Requirements to ensure consideration of human performance characteristics to control and safely recover the crew from hazardous situations. This paper discusses, at a high level, CHI for the Artemis campaign. Next, a discussion of what it means to human-rate a space system crew controls and how trust in CHI begins with the NASA human rating requirements. Finally, a discussion on how systems engineering and the HSI process ensure that crew control implementation incorporates the NASA human-rating requirements.