{"title":"MMV Subspace Pursuit (M-SP) Algorithm for Joint Sparse Multiple Measurement Vectors Recovery","authors":"Sujuan Liu, Lili Zheng, Lei Liu, Qianjin Lin","doi":"10.1109/ASICON47005.2019.8983646","DOIUrl":null,"url":null,"abstract":"In this paper, MMV Subspace Pursuit (M-SP) algorithm is proposed for solving joint sparse multiple measurement vectors (MMV) problem. The pre-selection and backtracking mechanisms are used in M-SP, so M-SP not only has higher recovery performance than some existing algorithms, but also significantly reduces the iteration number for improving the signal recovery efficiency. Simulations results show that M-SP and Simultaneous Compressive Sampling Matching Pursuit (SCoSaMP) have almost identical recovery performance and iteration times, but M-SP significantly reduces the computation complexity in per iteration. For example, when sparsity $K$ is 5, the computational complexity of M-SP is 24.0% of that of SCoSaMP in each iteration.","PeriodicalId":319342,"journal":{"name":"2019 IEEE 13th International Conference on ASIC (ASICON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON47005.2019.8983646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, MMV Subspace Pursuit (M-SP) algorithm is proposed for solving joint sparse multiple measurement vectors (MMV) problem. The pre-selection and backtracking mechanisms are used in M-SP, so M-SP not only has higher recovery performance than some existing algorithms, but also significantly reduces the iteration number for improving the signal recovery efficiency. Simulations results show that M-SP and Simultaneous Compressive Sampling Matching Pursuit (SCoSaMP) have almost identical recovery performance and iteration times, but M-SP significantly reduces the computation complexity in per iteration. For example, when sparsity $K$ is 5, the computational complexity of M-SP is 24.0% of that of SCoSaMP in each iteration.