Global Convergence Analysis of Dynamical Neural Networks with Multiple Time Delays

S. Senan, S. Arik
{"title":"Global Convergence Analysis of Dynamical Neural Networks with Multiple Time Delays","authors":"S. Senan, S. Arik","doi":"10.1109/ISIC.2007.4450921","DOIUrl":null,"url":null,"abstract":"This paper studies the global convergence properties of continuous-time neural networks with multiple time delays. By employing suitable and more general Lyapunov functionals, we derive a new delay independent sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point. The results are applicable to all continuous non-monotonic neuron activation functions and do not require the interconnection matrices to be symmetric. The obtained results can be easily verified as they can be expressed in terms of the network parameters only. Some numerical examples are also given to compare our results with previous stability results derived in the literature.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the global convergence properties of continuous-time neural networks with multiple time delays. By employing suitable and more general Lyapunov functionals, we derive a new delay independent sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point. The results are applicable to all continuous non-monotonic neuron activation functions and do not require the interconnection matrices to be symmetric. The obtained results can be easily verified as they can be expressed in terms of the network parameters only. Some numerical examples are also given to compare our results with previous stability results derived in the literature.
多时滞动态神经网络的全局收敛性分析
研究了具有多时滞的连续神经网络的全局收敛性。利用合适的和更一般的Lyapunov泛函,给出了平衡点存在唯一性和全局渐近稳定的一个新的时滞无关的充分条件。该结果适用于所有连续非单调神经元激活函数,且不要求互连矩阵是对称的。所得结果可以只用网络参数来表示,因此很容易验证。文中还给出了一些数值算例,将本文的结果与文献中已有的稳定性结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信