An intelligent vision-based vehicle detection and tracking system for automotive applications

Yi-Min Tsai, Chih-Chung Tsai, K. Huang, Liang-Gee Chen
{"title":"An intelligent vision-based vehicle detection and tracking system for automotive applications","authors":"Yi-Min Tsai, Chih-Chung Tsai, K. Huang, Liang-Gee Chen","doi":"10.1109/ICCE.2011.5722490","DOIUrl":null,"url":null,"abstract":"In this paper, we present an intelligent vision-based on-road preceding vehicle detection and tracking system based on computer vision techniques. Pre-processing video stabilization is adopted to improve system reliability and stability. High performance detection is achieved via the machine learning-based method. Our framework is favored for various automotive applications, which yields above 90% detection rate in long range and 99.1% tracking successful rate in middle range.","PeriodicalId":256368,"journal":{"name":"2011 IEEE International Conference on Consumer Electronics (ICCE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2011.5722490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present an intelligent vision-based on-road preceding vehicle detection and tracking system based on computer vision techniques. Pre-processing video stabilization is adopted to improve system reliability and stability. High performance detection is achieved via the machine learning-based method. Our framework is favored for various automotive applications, which yields above 90% detection rate in long range and 99.1% tracking successful rate in middle range.
一种用于汽车应用的基于智能视觉的车辆检测和跟踪系统
本文提出了一种基于计算机视觉技术的基于智能视觉的道路前车检测与跟踪系统。采用预处理视频防抖,提高了系统的可靠性和稳定性。通过基于机器学习的方法实现高性能检测。我们的框架适用于各种汽车应用,其远程检测率超过90%,中程跟踪成功率达到99.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信