Two Approaches to Analyzing Data of Project Teams

Krzysztof Nowak, Kamila Pietrzak
{"title":"Two Approaches to Analyzing Data of Project Teams","authors":"Krzysztof Nowak, Kamila Pietrzak","doi":"10.7172/978-83-65402-94-3.2019.wwz.3.5","DOIUrl":null,"url":null,"abstract":"In this chapter, we compare and discuss several statistical approaches to analyzing data obtained from team members. As an illustrative example, we analyze data obtained from 636 team members across 87 teams from 8 companies located in Poland using ordinary least squares multiple regression analysis, multiple regression with clustered standard errors, and mixed modeling. In the example, we analyze the relationship between team size and team gender composition concerning team climate. While a model building approach to hypothesis testing yields most similar results for multiple regression an a clustered standard error approach, a multilevel model yields results more similar to OLS regression when testing the significance of individual predictors, suggesting a clustered standard error correction is more prone to a type II error rate when testing model coefficients than an equivalent multilevel model. Finally, the implications of these observations to team data analyses are discussed.","PeriodicalId":351807,"journal":{"name":"Management Challenges in the Era of Globalization","volume":"87 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management Challenges in the Era of Globalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7172/978-83-65402-94-3.2019.wwz.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, we compare and discuss several statistical approaches to analyzing data obtained from team members. As an illustrative example, we analyze data obtained from 636 team members across 87 teams from 8 companies located in Poland using ordinary least squares multiple regression analysis, multiple regression with clustered standard errors, and mixed modeling. In the example, we analyze the relationship between team size and team gender composition concerning team climate. While a model building approach to hypothesis testing yields most similar results for multiple regression an a clustered standard error approach, a multilevel model yields results more similar to OLS regression when testing the significance of individual predictors, suggesting a clustered standard error correction is more prone to a type II error rate when testing model coefficients than an equivalent multilevel model. Finally, the implications of these observations to team data analyses are discussed.
分析项目团队数据的两种方法
在本章中,我们比较和讨论了几种统计方法来分析从团队成员那里获得的数据。作为一个说说性的例子,我们使用普通最小二乘多元回归分析、聚类标准误差多元回归分析和混合建模分析了来自波兰8家公司87个团队的636名团队成员的数据。在这个例子中,我们分析了团队规模与团队性别构成之间的关系。虽然假设检验的模型构建方法在多元回归和聚类标准误差方法中产生的结果最相似,但在测试单个预测因子的显著性时,多层模型产生的结果更类似于OLS回归,这表明在测试模型系数时,聚类标准误差修正比等效多层模型更容易出现II型错误率。最后,讨论了这些观察结果对团队数据分析的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信