Crop Type Classification based on Machine Learning with Multitemporal Sentinel-1 Data

J. Jeppesen, R. Jacobsen, R. Jørgensen
{"title":"Crop Type Classification based on Machine Learning with Multitemporal Sentinel-1 Data","authors":"J. Jeppesen, R. Jacobsen, R. Jørgensen","doi":"10.1109/DSD51259.2020.00092","DOIUrl":null,"url":null,"abstract":"The amount of open satellite data has increased tremendously in recent years, simultaneously with a continuing decrease in the price of high performance cloud computing. This can be combined with machine learning methods to perform crop type classification in the agricultural sector. In this paper, we propose a data processing chain for processing multitemporal Sentinel-1 SAR data, and show how the temporal patterns of agricultural fields can be visualized to provide a valuable overview prior to classification. We then investigate the performance of 6 machine learning methods for crop type classification of 12 crop types based on 44333 fields, and achieve an overall accuracy of (94.02 ± 0.25)% with an RBF SVM classifier. The dataset used is a subset of all the fields of the chosen crop types in Denmark in 2019, which comprises a total of 289810, or 49.34% of all fields in the country for the 2019 season. The entire data processing chain is based on open data and free open source software, thereby minimizing the cost of practical applications and future work for both industry and academia. All code used for the paper is available on GitHub.","PeriodicalId":128527,"journal":{"name":"2020 23rd Euromicro Conference on Digital System Design (DSD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 23rd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD51259.2020.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The amount of open satellite data has increased tremendously in recent years, simultaneously with a continuing decrease in the price of high performance cloud computing. This can be combined with machine learning methods to perform crop type classification in the agricultural sector. In this paper, we propose a data processing chain for processing multitemporal Sentinel-1 SAR data, and show how the temporal patterns of agricultural fields can be visualized to provide a valuable overview prior to classification. We then investigate the performance of 6 machine learning methods for crop type classification of 12 crop types based on 44333 fields, and achieve an overall accuracy of (94.02 ± 0.25)% with an RBF SVM classifier. The dataset used is a subset of all the fields of the chosen crop types in Denmark in 2019, which comprises a total of 289810, or 49.34% of all fields in the country for the 2019 season. The entire data processing chain is based on open data and free open source software, thereby minimizing the cost of practical applications and future work for both industry and academia. All code used for the paper is available on GitHub.
基于multi - temporal Sentinel-1数据的机器学习作物类型分类
近年来,开放卫星数据的数量急剧增加,同时高性能云计算的价格也在持续下降。这可以与机器学习方法相结合,在农业部门进行作物类型分类。在本文中,我们提出了一个数据处理链,用于处理多时段Sentinel-1 SAR数据,并展示了如何将农田的时间模式可视化,从而在分类之前提供有价值的概述。然后,我们研究了6种机器学习方法对基于44333块田的12种作物类型进行作物类型分类的性能,并使用RBF SVM分类器实现了(94.02±0.25)%的总体准确率。使用的数据集是2019年丹麦选定作物类型的所有田地的子集,共包括289810块田地,占2019年全国所有田地的49.34%。整个数据处理链基于开放数据和免费开源软件,从而最大限度地降低了实际应用和工业界和学术界未来工作的成本。论文中使用的所有代码都可以在GitHub上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信