A graph based data mining method for collaborative learning space in learning commons

Kazushi Okamoto, H. Asanuma, K. Kawamoto
{"title":"A graph based data mining method for collaborative learning space in learning commons","authors":"Kazushi Okamoto, H. Asanuma, K. Kawamoto","doi":"10.1109/WAC.2014.6935976","DOIUrl":null,"url":null,"abstract":"A graph based data mining method, which discovers automatically usage patterns from user-to-user and user-to-object interactions in a collaborative learning space, is proposed. The proposal describes mathematically observed users, objects, and their interactions at a given time as a set of graphs (a usage pattern) whose node is a user or an object and edge is assigned depending on a physical distance between two nodes. It is validated that the proposal can provide useful data for interview planning and evidences for interview results. On the validation, detection of frequent local usage patterns, detection of rare spatial layouts among usage patterns, and grouping hours containing similar local usage patterns are demonstrated with the 324 pictures taken at the collaborative learning space in Chiba University Library.","PeriodicalId":196519,"journal":{"name":"2014 World Automation Congress (WAC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 World Automation Congress (WAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAC.2014.6935976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A graph based data mining method, which discovers automatically usage patterns from user-to-user and user-to-object interactions in a collaborative learning space, is proposed. The proposal describes mathematically observed users, objects, and their interactions at a given time as a set of graphs (a usage pattern) whose node is a user or an object and edge is assigned depending on a physical distance between two nodes. It is validated that the proposal can provide useful data for interview planning and evidences for interview results. On the validation, detection of frequent local usage patterns, detection of rare spatial layouts among usage patterns, and grouping hours containing similar local usage patterns are demonstrated with the 324 pictures taken at the collaborative learning space in Chiba University Library.
基于图的协同学习空间数据挖掘方法
提出了一种基于图的数据挖掘方法,该方法可以自动发现协作学习空间中用户对用户和用户对对象交互的使用模式。该建议将在给定时间观察到的用户、对象及其交互用数学方法描述为一组图(使用模式),其节点是用户或对象,并且根据两个节点之间的物理距离分配边缘。研究结果表明,该方法可以为访谈计划提供有用的数据,并为访谈结果提供证据。在验证方面,以千叶大学图书馆协同学习空间拍摄的324张照片为例,对频繁的局部使用模式进行检测,对使用模式之间的罕见空间布局进行检测,对包含相似局部使用模式的小时进行分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信