Optimal Iterative Learning Controls for the Partial Non-Regular Systems Using Lifting Technique

Shengyue Yang, Xiaoping Fan
{"title":"Optimal Iterative Learning Controls for the Partial Non-Regular Systems Using Lifting Technique","authors":"Shengyue Yang, Xiaoping Fan","doi":"10.1109/CCA.2007.4389209","DOIUrl":null,"url":null,"abstract":"Deficiencies of the optimal iterative learning control (ILC) for the non-regular systems are investigated in detail, then a faster control input updating and lifting technique is introduced in the design of optimal ILC for the partial non-regular systems. Besides, a novel optimal ILC based on new defined performance index in iteration domain is presented for the lifted systems. At last, simulation results are given to illustrated feasibility of proposed learning controls.","PeriodicalId":176828,"journal":{"name":"2007 IEEE International Conference on Control Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2007.4389209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deficiencies of the optimal iterative learning control (ILC) for the non-regular systems are investigated in detail, then a faster control input updating and lifting technique is introduced in the design of optimal ILC for the partial non-regular systems. Besides, a novel optimal ILC based on new defined performance index in iteration domain is presented for the lifted systems. At last, simulation results are given to illustrated feasibility of proposed learning controls.
基于提升技术的部分非正则系统的最优迭代学习控制
详细分析了非正则系统的最优迭代学习控制(ILC)存在的不足,在此基础上引入了一种更快的控制输入更新和提升技术,用于部分非正则系统的最优ILC设计。此外,针对提升系统提出了一种基于迭代域新定义性能指标的最优ILC。最后给出了仿真结果,说明了所提学习控制的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信