L. Goux, J. Lisoni, L. Courtade, C. Muller, M. Jurczak, D. Wouters
{"title":"On the Bipolar and Unipolar Switching Mechanisms Observed in NiO Memory Cells Made by Thermal Oxidation of Ni","authors":"L. Goux, J. Lisoni, L. Courtade, C. Muller, M. Jurczak, D. Wouters","doi":"10.1109/IMW.2009.5090601","DOIUrl":null,"url":null,"abstract":"The NiO resistive-switching memory is under investigation due to its attractive properties and scaling potential. In this paper, we evidence the possible coexistence of both the bipolar and unipolar switching modes in NiO films. The bipolar mode can be activated provided the oxidation time is limited so that O 2- movement through easy paths allows electrochemical reduction/oxidation, while the unipolar mode is favored for longer oxidation times associated with larger NiO cell resistance. The memory states in bipolar and unipolar modes are shown to have different electrical properties.","PeriodicalId":113507,"journal":{"name":"2009 IEEE International Memory Workshop","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Memory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2009.5090601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The NiO resistive-switching memory is under investigation due to its attractive properties and scaling potential. In this paper, we evidence the possible coexistence of both the bipolar and unipolar switching modes in NiO films. The bipolar mode can be activated provided the oxidation time is limited so that O 2- movement through easy paths allows electrochemical reduction/oxidation, while the unipolar mode is favored for longer oxidation times associated with larger NiO cell resistance. The memory states in bipolar and unipolar modes are shown to have different electrical properties.
由于其极具吸引力的特性和扩展潜力,人们正在对氧化镍电阻开关存储器进行研究。在本文中,我们证明了氧化镍薄膜中可能同时存在双极和单极开关模式。双极模式可以在氧化时间有限的情况下被激活,这样 O 2- 就可以通过简单的路径进行电化学还原/氧化,而单极模式则在氧化时间较长、NiO 电池电阻较大的情况下更受青睐。双极模式和单极模式的记忆状态具有不同的电气特性。