Adaptive eXogenous Kalman Filter for Actuator Fault Diagnosis in Robotics and Autonomous Systems

A. Hasan
{"title":"Adaptive eXogenous Kalman Filter for Actuator Fault Diagnosis in Robotics and Autonomous Systems","authors":"A. Hasan","doi":"10.1109/ICCMA46720.2019.8988724","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for actuator fault diagnosis in robotics and autonomous systems under random uncertainties based on a cascade of nonlinear observer and linearized Kalman filter. The two-stage estimation method assumes uniform complete observability and controllability conditions and persistent excitation condition. To this end, we consider dynamical systems of robotics and autonomous systems with one-sided Lipschitz nonlinearity. To demonstrate the effectiveness of the proposed algorithm, numerical simulations in a single-link flexible joint robot are performed.","PeriodicalId":377212,"journal":{"name":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA46720.2019.8988724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an algorithm for actuator fault diagnosis in robotics and autonomous systems under random uncertainties based on a cascade of nonlinear observer and linearized Kalman filter. The two-stage estimation method assumes uniform complete observability and controllability conditions and persistent excitation condition. To this end, we consider dynamical systems of robotics and autonomous systems with one-sided Lipschitz nonlinearity. To demonstrate the effectiveness of the proposed algorithm, numerical simulations in a single-link flexible joint robot are performed.
基于自适应外生卡尔曼滤波的机器人与自主系统执行器故障诊断
提出了一种基于非线性观测器级联和线性化卡尔曼滤波的随机不确定机器人和自主系统执行器故障诊断算法。两阶段估计方法假设了均匀完全的可观测性和可控性条件和持续激励条件。为此,我们考虑了机器人动力系统和单侧Lipschitz非线性自治系统。为了验证该算法的有效性,对单连杆柔性关节机器人进行了数值仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信