Accelerating machine learning with Non-Volatile Memory: Exploring device and circuit tradeoffs

Alessandro Fumarola, P. Narayanan, Lucas L. Sanches, Severin Sidler, Junwoo Jang, Kibong Moon, R. Shelby, H. Hwang, G. Burr
{"title":"Accelerating machine learning with Non-Volatile Memory: Exploring device and circuit tradeoffs","authors":"Alessandro Fumarola, P. Narayanan, Lucas L. Sanches, Severin Sidler, Junwoo Jang, Kibong Moon, R. Shelby, H. Hwang, G. Burr","doi":"10.1109/ICRC.2016.7738684","DOIUrl":null,"url":null,"abstract":"Large arrays of the same nonvolatile memories (NVM) being developed for Storage-Class Memory (SCM) - such as Phase Change Memory (PCM) and Resistance RAM (ReRAM) - can also be used in non-Von Neumann neuromorphic computational schemes, with device conductance serving as synaptic “weight.” This allows the all-important multiply-accumulate operation within these algorithms to be performed efficiently at the weight data.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Large arrays of the same nonvolatile memories (NVM) being developed for Storage-Class Memory (SCM) - such as Phase Change Memory (PCM) and Resistance RAM (ReRAM) - can also be used in non-Von Neumann neuromorphic computational schemes, with device conductance serving as synaptic “weight.” This allows the all-important multiply-accumulate operation within these algorithms to be performed efficiently at the weight data.
用非易失性存储器加速机器学习:探索器件和电路的权衡
为存储级存储器(SCM)开发的相同的非易失性存储器(NVM)的大阵列-例如相变存储器(PCM)和电阻RAM (ReRAM) -也可以用于非冯诺伊曼神经形态计算方案,器件电导作为突触“重量”。这允许在权重数据上有效地执行这些算法中最重要的乘法-累加操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信