Target tracking in dynamic background using generalized regression neural network

K. K. Halder, M. Tahtali, S. Anavatti
{"title":"Target tracking in dynamic background using generalized regression neural network","authors":"K. K. Halder, M. Tahtali, S. Anavatti","doi":"10.1109/ICAMIMIA.2015.7507992","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach to track moving objects in videos having a dynamic background. At first, we apply an object detection algorithm that deals with the detection of real objects in a degraded video by separating them from turbulence-induced motions using a two-level thresholding technique. Then, a generalized regression neural network is used to track the detected objects throughout the frames in the video. The proposed approach utilizes the features of centroid and area of moving objects and creates the reference regions instantly by selecting the objects within a circle. The performance of the proposed approach is compared with that of an existing approach by applying them to turbulence degraded videos, and competitive results are obtained.","PeriodicalId":162848,"journal":{"name":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAMIMIA.2015.7507992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a new approach to track moving objects in videos having a dynamic background. At first, we apply an object detection algorithm that deals with the detection of real objects in a degraded video by separating them from turbulence-induced motions using a two-level thresholding technique. Then, a generalized regression neural network is used to track the detected objects throughout the frames in the video. The proposed approach utilizes the features of centroid and area of moving objects and creates the reference regions instantly by selecting the objects within a circle. The performance of the proposed approach is compared with that of an existing approach by applying them to turbulence degraded videos, and competitive results are obtained.
基于广义回归神经网络的动态背景下目标跟踪
本文提出了一种在具有动态背景的视频中跟踪运动目标的新方法。首先,我们应用了一种目标检测算法,该算法通过使用两级阈值技术将它们与湍流引起的运动分离,来处理降级视频中真实物体的检测。然后,使用广义回归神经网络在视频的整个帧中跟踪检测到的目标。该方法利用运动物体的质心和面积的特征,通过选择圆内的物体,快速生成参考区域。将该方法应用于湍流退化视频,并与现有方法的性能进行了比较,得到了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信