Circulating MVAR control in Rajasthan (India) transmission system

R. Panwar, Vikas Sharma, M. Sharma, Bhavesh Vyas
{"title":"Circulating MVAR control in Rajasthan (India) transmission system","authors":"R. Panwar, Vikas Sharma, M. Sharma, Bhavesh Vyas","doi":"10.1109/ICPEICES.2016.7853696","DOIUrl":null,"url":null,"abstract":"Large number of substations have been upgraded to higher voltage level by loop in loop out of existing transmission lines to meet the increasing load demand. Therefore; large number of loops of different voltage levels has been created between substations. Transformers of different MVA ratings; percentage impedance and tap ratios have been installed at the substations. Presently there is no coordination between adjoining substation operators for tap setting of transformers. Therefore; due to mismatch of transformers tap ratio and percentage impedance; circulating MVARs are flowing on transmission lines resulting in higher transmission losses; increase loading of transformers & lines and poor voltage profile. In this paper impact of circulating MVAR flow and its control through coordinated tap setting of transformers has been studied. Rajasthan power system has been considered to carry out the studies and has been modeled in Mi-Power software. Rajasthan Power System have total 750 buses comprising 2 nos. 765 KV; 35 nos. 400 KV; 147 nos. 220 KV; 504 nos. 132 KV and 62 nos. generator buses with load of 10000 MW. Effect of coordinated Tap setting of transformers on circulating MVAR flow; transmission losses; network voltage profile and lines & transformers loading have been analyzed. Proposed methodology has been successfully tested on Rajasthan power system to remove the circulating MVAR flows on 220 kV and 132 kV network.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEICES.2016.7853696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Large number of substations have been upgraded to higher voltage level by loop in loop out of existing transmission lines to meet the increasing load demand. Therefore; large number of loops of different voltage levels has been created between substations. Transformers of different MVA ratings; percentage impedance and tap ratios have been installed at the substations. Presently there is no coordination between adjoining substation operators for tap setting of transformers. Therefore; due to mismatch of transformers tap ratio and percentage impedance; circulating MVARs are flowing on transmission lines resulting in higher transmission losses; increase loading of transformers & lines and poor voltage profile. In this paper impact of circulating MVAR flow and its control through coordinated tap setting of transformers has been studied. Rajasthan power system has been considered to carry out the studies and has been modeled in Mi-Power software. Rajasthan Power System have total 750 buses comprising 2 nos. 765 KV; 35 nos. 400 KV; 147 nos. 220 KV; 504 nos. 132 KV and 62 nos. generator buses with load of 10000 MW. Effect of coordinated Tap setting of transformers on circulating MVAR flow; transmission losses; network voltage profile and lines & transformers loading have been analyzed. Proposed methodology has been successfully tested on Rajasthan power system to remove the circulating MVAR flows on 220 kV and 132 kV network.
拉贾斯坦(印度)输电系统循环MVAR控制
为了满足日益增长的负荷需求,大量变电站通过在现有输电线路上进行回路进回路出的方式升级到更高的电压水平。因此;变电站之间形成了大量不同电压等级的回路。不同MVA等级的变压器;已在变电站安装了百分比阻抗和抽头比率。目前,相邻变电站的操作人员之间没有协调变压器的分接整定。因此;变压器分接比和百分比阻抗不匹配;循环mvar在传输线上流动,造成更高的传输损耗;增加变压器和线路的负荷和不良电压分布。本文研究了循环MVAR流量的影响及其通过变压器协调分接整定的控制。以拉贾斯坦邦电力系统为研究对象,在Mi-Power软件中进行了建模。拉贾斯坦邦电力系统共有750辆公交车,包括2路765千伏;400千伏35条;147台220千伏;132千伏发电机母线504台,负载10000兆瓦发电机母线62台。变压器协调分接整定对循环MVAR流量的影响输电损耗;分析了电网电压分布和线路变压器负荷。该方法已在拉贾斯坦邦电力系统上进行了成功的试验,以消除220千伏和132千伏电网上的循环MVAR流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信