Shape-Based Transfer of Generic Skills

Skye Thompson, L. Kaelbling, Tomas Lozano-Perez
{"title":"Shape-Based Transfer of Generic Skills","authors":"Skye Thompson, L. Kaelbling, Tomas Lozano-Perez","doi":"10.1109/ICRA48506.2021.9560894","DOIUrl":null,"url":null,"abstract":"We propose a new, data-efficient approach for skill transfer to novel objects, accounting for known categorical shape variation. A low-dimensional shape representation embedding is learned from a set of deformations, sampled between known objects within a category. This latent representation is mapped to a set of control parameters that result in successful execution of a category-level skill on that object. This method generalizes a learned manipulation policy to unseen objects with few training examples. We demonstrate this approach on pouring from cups and scooping with spatulas, where there is complex, nonlinear variation of successful control parameters across objects.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9560894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a new, data-efficient approach for skill transfer to novel objects, accounting for known categorical shape variation. A low-dimensional shape representation embedding is learned from a set of deformations, sampled between known objects within a category. This latent representation is mapped to a set of control parameters that result in successful execution of a category-level skill on that object. This method generalizes a learned manipulation policy to unseen objects with few training examples. We demonstrate this approach on pouring from cups and scooping with spatulas, where there is complex, nonlinear variation of successful control parameters across objects.
基于形状的通用技能转移
我们提出了一种新的,数据高效的方法,用于技能转移到新的对象,考虑已知的分类形状变化。低维形状表示嵌入从一组变形中学习,在类别内的已知对象之间采样。这个潜在表示被映射到一组控制参数,这些参数导致在该对象上成功执行类别级技能。该方法将学习到的操作策略推广到不可见的对象上,只需要很少的训练样本。我们演示了这种方法从杯子倒和铲铲,其中有复杂的,非线性变化的成功控制参数跨对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信