Analysis of a novel 2-DOF flexure hinge-based parallel micromanipulator in a polar coordinate system

Jiming Huang, Yangmin Li
{"title":"Analysis of a novel 2-DOF flexure hinge-based parallel micromanipulator in a polar coordinate system","authors":"Jiming Huang, Yangmin Li","doi":"10.1109/ICAL.2010.5585301","DOIUrl":null,"url":null,"abstract":"Based on flexure hinges, a novel two-degree-of-freedom (2-DOF) compliant parallel micromanipulator driven by piezoelectric actuator (PZT) is presented in this paper. According to the designed mechanism structure, a pseudo rigid body (PRB) model is set up, and then the kinematics and statics are studied in a polar coordinate system. The workspace analysis is given subsequently according to the motion ranges of flexure hinges and actuators. To examine the static performance of the mechanism and verify the accuracy of the established kinematic model, finite element analysis (FEA) is carried out using ANSYS software. The simulation result also reveals that the mechanism has ideal linearity in terms of the kinematic and static properties.","PeriodicalId":393739,"journal":{"name":"2010 IEEE International Conference on Automation and Logistics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2010.5585301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Based on flexure hinges, a novel two-degree-of-freedom (2-DOF) compliant parallel micromanipulator driven by piezoelectric actuator (PZT) is presented in this paper. According to the designed mechanism structure, a pseudo rigid body (PRB) model is set up, and then the kinematics and statics are studied in a polar coordinate system. The workspace analysis is given subsequently according to the motion ranges of flexure hinges and actuators. To examine the static performance of the mechanism and verify the accuracy of the established kinematic model, finite element analysis (FEA) is carried out using ANSYS software. The simulation result also reveals that the mechanism has ideal linearity in terms of the kinematic and static properties.
一种新型二自由度柔性铰链并联微机械臂在极坐标系下的分析
提出了一种基于柔性铰链的压电驱动器并联二自由度柔性微机械臂。根据所设计的机构结构,建立了伪刚体模型,并在极坐标系下进行了运动学和静力学研究。根据柔性铰链和执行机构的运动范围,给出了工作空间分析。为了检验机构的静力性能并验证所建立的运动模型的准确性,利用ANSYS软件进行了有限元分析。仿真结果还表明,该机构在运动和静态性能方面都具有理想的线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信