{"title":"Modular SMT-based analysis of nonlinear hybrid systems","authors":"K. Bae, Sicun Gao","doi":"10.23919/FMCAD.2017.8102258","DOIUrl":null,"url":null,"abstract":"We present SMT-based techniques for analyzing networks of nonlinear hybrid systems, which interact with each other in both discrete and continuous ways. We propose a modular encoding method to reduce reachability problems of hybrid components, involving continuous I/O as well as usual discrete I/O, into the satisfiability of first-order logic formulas over the real numbers. We identify a generic class of logical formulas to modularly encode networks of hybrid systems, and present an SMT algorithm for checking the satisfiability of such logical formulas. The experimental results show that our techniques significantly increase the performance of SMT-based analysis for networks of nonlinear hybrid components.","PeriodicalId":405292,"journal":{"name":"2017 Formal Methods in Computer Aided Design (FMCAD)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Formal Methods in Computer Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FMCAD.2017.8102258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present SMT-based techniques for analyzing networks of nonlinear hybrid systems, which interact with each other in both discrete and continuous ways. We propose a modular encoding method to reduce reachability problems of hybrid components, involving continuous I/O as well as usual discrete I/O, into the satisfiability of first-order logic formulas over the real numbers. We identify a generic class of logical formulas to modularly encode networks of hybrid systems, and present an SMT algorithm for checking the satisfiability of such logical formulas. The experimental results show that our techniques significantly increase the performance of SMT-based analysis for networks of nonlinear hybrid components.