Commodious axiomatization of quantifiers in multiple-valued logic

R. Hahnle
{"title":"Commodious axiomatization of quantifiers in multiple-valued logic","authors":"R. Hahnle","doi":"10.1109/ISMVL.1996.508346","DOIUrl":null,"url":null,"abstract":"We provide a concise axiomatization of a broad class of generalized quantifiers in many-valued logic, so-called distribution quantifiers. Although sound and complete axiomatizations for such quantifiers exist, their size renders them virtually useless for practical purposes. We show that for certain lattice-based quantifiers relatively small axiomatizations can be obtained in a schematic way. This is achieved by providing an explicit link between skolemized signed formulas and filters/ideals in Boolean set lattices.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"108 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We provide a concise axiomatization of a broad class of generalized quantifiers in many-valued logic, so-called distribution quantifiers. Although sound and complete axiomatizations for such quantifiers exist, their size renders them virtually useless for practical purposes. We show that for certain lattice-based quantifiers relatively small axiomatizations can be obtained in a schematic way. This is achieved by providing an explicit link between skolemized signed formulas and filters/ideals in Boolean set lattices.
多值逻辑中量词的大量公理化
我们提供了多值逻辑中广义量词的一个简明公理,即所谓的分布量词。虽然对于这类量词存在健全和完整的公理化,但它们的大小使它们实际上对实际目的毫无用处。我们证明了对于某些基于格的量词,可以用示意图的方式获得相对较小的公理化。这是通过在布尔集合格中提供skolemized有符号公式和过滤器/理想之间的显式链接来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信