On the distributions of the relative phase of complex wavelet coefficients

An P. N. Vo, S. Oraintara
{"title":"On the distributions of the relative phase of complex wavelet coefficients","authors":"An P. N. Vo, S. Oraintara","doi":"10.1109/ISCAS.2009.5117802","DOIUrl":null,"url":null,"abstract":"In this paper, the probability distributions of relative phase are studied. We proposed von Mises and wrapped Cauchy for the probability density function (pdf) of the relative phase in complex wavelet domain. The maximum-likelihood method is used to estimate the two parameters of von Mises and wrapped Cauchy. We demonstrate that the von Mises and wrapped Cauchy fit well with real data obtained from various real images including texture images as well as natural images. The von Mises and wrapped Cauchy models are compared, and the simulation results show that the wrapped Cauchy fits well with the peaky and heavy-tailed pdf of the relative phase and the von Mises fits well with the pdf which is in Gaussian shape. For most of the test images, the wrapped Cauchy model is more accurate than the von Mises, when images are decomposed by different complex wavelet transforms including dual-tree complex wavelet (DTCWT), pyramidal dual-tree directional filter bank (PDTDFB) and a modified version of curvelet.","PeriodicalId":388394,"journal":{"name":"2009 IEEE International Symposium on Circuits and Systems","volume":"43 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2009.5117802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, the probability distributions of relative phase are studied. We proposed von Mises and wrapped Cauchy for the probability density function (pdf) of the relative phase in complex wavelet domain. The maximum-likelihood method is used to estimate the two parameters of von Mises and wrapped Cauchy. We demonstrate that the von Mises and wrapped Cauchy fit well with real data obtained from various real images including texture images as well as natural images. The von Mises and wrapped Cauchy models are compared, and the simulation results show that the wrapped Cauchy fits well with the peaky and heavy-tailed pdf of the relative phase and the von Mises fits well with the pdf which is in Gaussian shape. For most of the test images, the wrapped Cauchy model is more accurate than the von Mises, when images are decomposed by different complex wavelet transforms including dual-tree complex wavelet (DTCWT), pyramidal dual-tree directional filter bank (PDTDFB) and a modified version of curvelet.
复小波系数相对相位分布的研究
本文研究了相对相位的概率分布。在复小波域中,我们提出了相对相位的概率密度函数(pdf)的von Mises和wrapped Cauchy。用极大似然法估计了von Mises和wrapped Cauchy的两个参数。我们证明了von Mises模型和包裹柯西模型与实际图像(包括纹理图像和自然图像)的拟合效果良好。对比了von Mises模型和包裹柯西模型,仿真结果表明,包裹柯西模型与相对相位的峰形和重尾型方程拟合较好,von Mises模型与高斯型方程拟合较好。当采用双树复小波变换(DTCWT)、锥体双树方向滤波组(PDTDFB)和改进的曲波变换(curvelet)对图像进行分解时,对于大多数测试图像,包裹柯西模型比von Mises模型更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信