Human to Robot Whole-Body Motion Transfer

Miguel Arduengo, Ana Arduengo, Adrià Colomé, J. Lobo-Prat, C. Torras
{"title":"Human to Robot Whole-Body Motion Transfer","authors":"Miguel Arduengo, Ana Arduengo, Adrià Colomé, J. Lobo-Prat, C. Torras","doi":"10.1109/HUMANOIDS47582.2021.9555769","DOIUrl":null,"url":null,"abstract":"Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspondence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. This constitutes an easy way for a non-expert to transfer a manipulation skill to an assistive robot.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspondence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. This constitutes an easy way for a non-expert to transfer a manipulation skill to an assistive robot.
人到机器人的全身运动传递
将人的运动转移到移动机器人上,并确保安全的人机物理交互是实现人类共享环境中复杂操作任务自动化的关键步骤。在这项工作中,我们提出了一种新的人到机器人全身运动传递框架。我们提出了对应问题的一般解决方案,即观察到的人类姿态与机器人姿态之间的映射。为了实现实时仿真和有效的冗余解决,我们采用了全身控制范式,提出了特定的任务层次结构,并提出了轮式机器人基础的差分驱动控制算法。为了保证人机物理交互的安全,我们提出了一种新的可变导纳控制器,该控制器可以稳定地适应末端执行器的动态,在刚性和柔性行为之间切换。我们通过TIAGo机器人的几个真实世界实验验证了我们的方法。结果表明,该系统具有良好的实时仿真和动态行为适应能力。这为非专业人员将操作技能转移到辅助机器人提供了一种简单的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信