Miguel Arduengo, Ana Arduengo, Adrià Colomé, J. Lobo-Prat, C. Torras
{"title":"Human to Robot Whole-Body Motion Transfer","authors":"Miguel Arduengo, Ana Arduengo, Adrià Colomé, J. Lobo-Prat, C. Torras","doi":"10.1109/HUMANOIDS47582.2021.9555769","DOIUrl":null,"url":null,"abstract":"Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspondence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. This constitutes an easy way for a non-expert to transfer a manipulation skill to an assistive robot.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspondence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. This constitutes an easy way for a non-expert to transfer a manipulation skill to an assistive robot.