Multi-Physics Simulation-Based Prognosis of Titanium Dioxide Nanoparticles-Embedded Solar Cell

Allah Rakhio Junejo, Hyunseung Ryu, Wooseung Noh, N. Raghavan, Sang-Hun Kim, Jaehyeok Doh
{"title":"Multi-Physics Simulation-Based Prognosis of Titanium Dioxide Nanoparticles-Embedded Solar Cell","authors":"Allah Rakhio Junejo, Hyunseung Ryu, Wooseung Noh, N. Raghavan, Sang-Hun Kim, Jaehyeok Doh","doi":"10.1109/IPFA55383.2022.9915771","DOIUrl":null,"url":null,"abstract":"This study focuses on the multi-physics simulation-based prognosis of titanium dioxide nanoparticles (TiO2, NPs) doped in dye-sensitized solar cells (DSSCs), considering optical and electrical properties. The fabrication of TiO2, NPs using the Sol-Gel method (400 oC) is the optimal calcination temperature to achieve an anatase phase. Various physical-chemical properties tests for TiO2, NPs are conducted to understand optical and electrical characterizations utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) and Ultraviolet-Visible (UV-vis) absorption spectrophotometry. Optical properties such as absorption, bandgap, deflection, and photoluminescence emission are also observed. Based on the best case of high-power energy conversion (PEC) amongst semiconductor material characterizations, multi-physics simulation (optical and electrical properties) for three-dimensional (3D) TiO2, NPs is carried out to acquire time-dependent current data, which is relative to degradation for DSSC. A data-driven prognosis of solar cells is then conducted by using degradation data. According to dye molecule layers, the remaining useful life (RUL) is stochastically predicted. The main contribution is to suggest the framework of multi-physics simulation-based prognosis for power energy applications.","PeriodicalId":378702,"journal":{"name":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA55383.2022.9915771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the multi-physics simulation-based prognosis of titanium dioxide nanoparticles (TiO2, NPs) doped in dye-sensitized solar cells (DSSCs), considering optical and electrical properties. The fabrication of TiO2, NPs using the Sol-Gel method (400 oC) is the optimal calcination temperature to achieve an anatase phase. Various physical-chemical properties tests for TiO2, NPs are conducted to understand optical and electrical characterizations utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) and Ultraviolet-Visible (UV-vis) absorption spectrophotometry. Optical properties such as absorption, bandgap, deflection, and photoluminescence emission are also observed. Based on the best case of high-power energy conversion (PEC) amongst semiconductor material characterizations, multi-physics simulation (optical and electrical properties) for three-dimensional (3D) TiO2, NPs is carried out to acquire time-dependent current data, which is relative to degradation for DSSC. A data-driven prognosis of solar cells is then conducted by using degradation data. According to dye molecule layers, the remaining useful life (RUL) is stochastically predicted. The main contribution is to suggest the framework of multi-physics simulation-based prognosis for power energy applications.
基于多物理场模拟的二氧化钛纳米颗粒嵌入太阳能电池预测
本研究的重点是基于多物理场模拟的染料敏化太阳能电池(DSSCs)中掺杂二氧化钛纳米粒子(TiO2, NPs)的预后,考虑光学和电学性质。采用溶胶-凝胶法制备TiO2, NPs的最佳焙烧温度为400℃,可获得锐钛矿相。利用x射线衍射(XRD)、x射线光电子能谱(XPS)、扫描电子显微镜(SEM)和紫外-可见(UV-vis)吸收分光光度法对TiO2、NPs进行了各种物理化学性能测试,以了解其光学和电学表征。光学性质,如吸收,带隙,偏转和光致发光发射也被观察到。基于半导体材料表征中大功率能量转换(PEC)的最佳案例,对三维(3D) TiO2进行了多物理场模拟(光学和电学性质),NPs获得了与时间相关的电流数据,这与DSSC的降解有关。然后利用退化数据对太阳能电池进行数据驱动的预测。根据染料分子层,随机预测了染料的剩余使用寿命。主要贡献是提出了基于多物理场模拟的电力能源应用预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信