A gradient method on the initial partition of Fiduccia-Mattheyses algorithm

Lung-Tien Liu, M. Kuo, Shih-Chen Huang, Chung-Kuan Cheng
{"title":"A gradient method on the initial partition of Fiduccia-Mattheyses algorithm","authors":"Lung-Tien Liu, M. Kuo, Shih-Chen Huang, Chung-Kuan Cheng","doi":"10.1109/ICCAD.1995.480017","DOIUrl":null,"url":null,"abstract":"In this paper, a Fiduccia-Mattheyses (FM) algorithm incorporating a novel initial partition generating method is proposed. The proposed algorithm applies to both bipartitioning and multi-way partitioning problems with or without replication. The initial partition generating method is based on a gradient descent algorithm. On partitioning without replication, our algorithm achieves an average of 17% improvement over the analytical method, PARABOLI, on bipartitioning, 10% better than Primal-Dual method on 4-way partitioning and 51% better than net-based method. On partitioning allowing replication, our algorithm achieves an average of 23% improvement over the directed Fiduccia-Mattheyses algorithm on Replication Graph (FMRG) method on bipartitioning.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.480017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this paper, a Fiduccia-Mattheyses (FM) algorithm incorporating a novel initial partition generating method is proposed. The proposed algorithm applies to both bipartitioning and multi-way partitioning problems with or without replication. The initial partition generating method is based on a gradient descent algorithm. On partitioning without replication, our algorithm achieves an average of 17% improvement over the analytical method, PARABOLI, on bipartitioning, 10% better than Primal-Dual method on 4-way partitioning and 51% better than net-based method. On partitioning allowing replication, our algorithm achieves an average of 23% improvement over the directed Fiduccia-Mattheyses algorithm on Replication Graph (FMRG) method on bipartitioning.
fiduccia - matthews算法初始分割的一种梯度方法
本文提出了一种基于初始分区生成方法的fiduccia - matthews (FM)算法。该算法适用于有或没有复制的双分区和多路分区问题。初始分区生成方法基于梯度下降算法。在没有复制的分区上,我们的算法在双分区上比分析方法抛物线平均提高17%,在4路分区上比原始对偶方法提高10%,比基于网络的方法提高51%。在允许复制的分区上,我们的算法比双分区上的定向fiduccia - matthews复制图算法(FMRG)平均提高了23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信