M. N. Nurol, A. R. Arief, M. Anuar, S. Aljunid, N. Din Keraf, Suki Arif
{"title":"Performance analysis of 2-D Extended-EDW Code for optical CDMA system","authors":"M. N. Nurol, A. R. Arief, M. Anuar, S. Aljunid, N. Din Keraf, Suki Arif","doi":"10.1109/ICED.2014.7015815","DOIUrl":null,"url":null,"abstract":"Two-dimensional Optical Code Division Multiple Access (2-D OCDMA) has gained great interest among researchers in optical communication systems. This work is aimed to present an alternative way of formulating the spectral/spatial incoherent two-dimensional Extended Enhanced Double Weight (2-D Extended-EDW) code. This code is proposed to suppress the phase induced intensity noise (PIIN) by using multiple access interference (MAI) cancellation property. The numerical analysis shows that 2-D EDW code has a better performance, in terms of bit error rate (BER) and the cardinality compared with one-dimensional Enhanced Double Weight (1-D EDW) code. In comparison with different combinations of spatial and spectral code length for 2-D Extended-EDW code, we found that by increasing the number of time chip, it significantly enhances the performance of the system.","PeriodicalId":143806,"journal":{"name":"2014 2nd International Conference on Electronic Design (ICED)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Electronic Design (ICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICED.2014.7015815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Two-dimensional Optical Code Division Multiple Access (2-D OCDMA) has gained great interest among researchers in optical communication systems. This work is aimed to present an alternative way of formulating the spectral/spatial incoherent two-dimensional Extended Enhanced Double Weight (2-D Extended-EDW) code. This code is proposed to suppress the phase induced intensity noise (PIIN) by using multiple access interference (MAI) cancellation property. The numerical analysis shows that 2-D EDW code has a better performance, in terms of bit error rate (BER) and the cardinality compared with one-dimensional Enhanced Double Weight (1-D EDW) code. In comparison with different combinations of spatial and spectral code length for 2-D Extended-EDW code, we found that by increasing the number of time chip, it significantly enhances the performance of the system.