Nanostructured materials for energy storage and energy conversion devices

D. Reisner, T. D. Xiao, P. R. Strutt, A. J. Salkind
{"title":"Nanostructured materials for energy storage and energy conversion devices","authors":"D. Reisner, T. D. Xiao, P. R. Strutt, A. J. Salkind","doi":"10.1109/IECEC.1997.661958","DOIUrl":null,"url":null,"abstract":"US Nanocorp, Inc. (USN) has developed an aqueous solution reaction (ASR) technique scalable for high volume production of nanostructured materials (n-materials) for a wide range of applications. By definition, nanophase materials have at least one physical dimension less than 10 nanometers (nm) in length, an attribute which imparts exceptional properties to them because the particle dimensions are close to atomic dimensions and there are a very high fraction of atoms residing at nanocrystalline grain boundaries. The high surface area of these materials has significant implications with respect to energy storage devices with electrochemical active sites (batteries, ultracapacitors) and energy conversion devices depending on catalytic sites or defect structure (e.g., fuel cells and thermoelectric devices). Potential application areas in both energy conversion and energy storage are discussed. Morphological studies of manganese dioxide have revealed the existence of both nanoporosity and mesoporosity within unusual superstructures comprised of nanorod building blocks. Nanophase nickel hydroxide has also been synthesized. Preliminary electrochemical studies are reported.","PeriodicalId":183668,"journal":{"name":"IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECEC.1997.661958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

US Nanocorp, Inc. (USN) has developed an aqueous solution reaction (ASR) technique scalable for high volume production of nanostructured materials (n-materials) for a wide range of applications. By definition, nanophase materials have at least one physical dimension less than 10 nanometers (nm) in length, an attribute which imparts exceptional properties to them because the particle dimensions are close to atomic dimensions and there are a very high fraction of atoms residing at nanocrystalline grain boundaries. The high surface area of these materials has significant implications with respect to energy storage devices with electrochemical active sites (batteries, ultracapacitors) and energy conversion devices depending on catalytic sites or defect structure (e.g., fuel cells and thermoelectric devices). Potential application areas in both energy conversion and energy storage are discussed. Morphological studies of manganese dioxide have revealed the existence of both nanoporosity and mesoporosity within unusual superstructures comprised of nanorod building blocks. Nanophase nickel hydroxide has also been synthesized. Preliminary electrochemical studies are reported.
用于能量存储和能量转换装置的纳米结构材料
美国纳米公司(USN)开发了一种水溶液反应(ASR)技术,可用于大规模生产纳米结构材料(n-材料),应用范围广泛。根据定义,纳米相材料至少有一个小于10纳米(nm)的物理尺寸,这一属性赋予了它们特殊的性能,因为颗粒尺寸接近原子尺寸,并且有非常高比例的原子驻留在纳米晶晶界上。这些材料的高表面积对于具有电化学活性位点的能量存储装置(电池,超级电容器)和依赖于催化位点或缺陷结构的能量转换装置(例如,燃料电池和热电装置)具有重要意义。讨论了能量转换和能量存储的潜在应用领域。二氧化锰的形态学研究揭示了纳米孔和介孔在由纳米棒组成的不寻常的上层结构中的存在。还合成了纳米氢氧化镍。报道了初步的电化学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信