Automatic Identification of Make and Model of Ankle Implants using Artificial Intelligence

Shaik Mushkin Ali, Sahithi Nara, A. Ramanathan, C. Malathy, R. Athilakshmi, M. Gayathri, V. Batta
{"title":"Automatic Identification of Make and Model of Ankle Implants using Artificial Intelligence","authors":"Shaik Mushkin Ali, Sahithi Nara, A. Ramanathan, C. Malathy, R. Athilakshmi, M. Gayathri, V. Batta","doi":"10.1109/ICECCT56650.2023.10179730","DOIUrl":null,"url":null,"abstract":"Orthopedic implant identification is a crucial step before planning a revision surgery. Failure to identify implants preoperatively can cause delay in surgeries. This increases pain and trauma to patients. Ankle replacement has seen an increase in both primary and revision surgeries recently. The paper proposes a novel framework to identify the make and model of the Ankle implants from X-ray images using Artificial intelligence. Authors have identified the implants with an accuracy of 96.09 % and an Area under curve of 0.9954 proving the superiority of deep learning in classifying the implants. The proposed work formulates a first and unique framework to identify the make and model of ankle replacements.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthopedic implant identification is a crucial step before planning a revision surgery. Failure to identify implants preoperatively can cause delay in surgeries. This increases pain and trauma to patients. Ankle replacement has seen an increase in both primary and revision surgeries recently. The paper proposes a novel framework to identify the make and model of the Ankle implants from X-ray images using Artificial intelligence. Authors have identified the implants with an accuracy of 96.09 % and an Area under curve of 0.9954 proving the superiority of deep learning in classifying the implants. The proposed work formulates a first and unique framework to identify the make and model of ankle replacements.
基于人工智能的踝关节植入物型号自动识别
骨科植入物识别是计划翻修手术前的关键步骤。术前未能识别植入物会导致手术延迟。这增加了病人的痛苦和创伤。最近,踝关节置换术的初次手术和翻修手术都有所增加。本文提出了一种利用人工智能从x射线图像中识别踝关节植入物的制造和型号的新框架。结果表明,深度学习对植入物分类的准确率为96.09%,曲线下面积为0.9954,证明了深度学习对植入物分类的优越性。提出的工作制定了第一个和独特的框架,以确定踝关节置换的制造和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信