{"title":"FPGA emulation and prototyping of a cyberphysical-system-on-chip (CPSoC)","authors":"S. Sarma, N. Dutt","doi":"10.1109/RSP.2014.6966902","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems-on-Chip (CPSoC) are a new class of sensor- and actuator-rich multiprocessor system-on-chips (MPSoCs) whose operations are monitored, coordinated, and controlled using a computing-communication-control (C3) centric core with additional on-chip and cross-layer sensing and actuation capabilities that enable self-awareness within the observe-decide-act (ODA) paradigm. In order to build, evaluate, and illustrate the effectiveness of various features of this new MPSoC paradigm in a fast and cost effective way, a rapid prototyping and emulation platform along with the tool chains is absolutely necessary. In this paper, we present a design library and an FPGA emulation and prototyping platform to build and investigate self-aware adaptive computing using CPSoC paradigm. Our example implementation of CPSoC prototyping using Xilinx FPGAs includes ring-oscillator (RO) based multipurpose sensors integrated with a sensor network-on-chip (sNoC) which in turn is interfaced either to a bus based shared memory architecture or to a communication and computation network-on- chip (cNoC) distributed fabric supporting several actuation mechanism in the software and hardware stack. We also briefly discuss few applications of the CPSoC design library and the platform.","PeriodicalId":394637,"journal":{"name":"2014 25nd IEEE International Symposium on Rapid System Prototyping","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25nd IEEE International Symposium on Rapid System Prototyping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP.2014.6966902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Cyber-Physical Systems-on-Chip (CPSoC) are a new class of sensor- and actuator-rich multiprocessor system-on-chips (MPSoCs) whose operations are monitored, coordinated, and controlled using a computing-communication-control (C3) centric core with additional on-chip and cross-layer sensing and actuation capabilities that enable self-awareness within the observe-decide-act (ODA) paradigm. In order to build, evaluate, and illustrate the effectiveness of various features of this new MPSoC paradigm in a fast and cost effective way, a rapid prototyping and emulation platform along with the tool chains is absolutely necessary. In this paper, we present a design library and an FPGA emulation and prototyping platform to build and investigate self-aware adaptive computing using CPSoC paradigm. Our example implementation of CPSoC prototyping using Xilinx FPGAs includes ring-oscillator (RO) based multipurpose sensors integrated with a sensor network-on-chip (sNoC) which in turn is interfaced either to a bus based shared memory architecture or to a communication and computation network-on- chip (cNoC) distributed fabric supporting several actuation mechanism in the software and hardware stack. We also briefly discuss few applications of the CPSoC design library and the platform.