{"title":"PID controller design for an interacting tank level process with time delay using MATLAB FOMCON toolbox","authors":"Deep Mukherjee, P. Kundu, A. Ghosh","doi":"10.1109/CIEC.2016.7513803","DOIUrl":null,"url":null,"abstract":"This paper presents a new way to design PID controller for both integer order and fractional order with a time delay for a typical interacting cylindrical tank system using MATLAB FOMCON toolbox. Here, our work aims to study the performance characteristics of integer order and fractional order PID controller on the current integer order plant obtaining minimum objective function by Nelder - Mead optimization technique with different performance metrics ISE, ITSE and IAE. Next our work shows to make comparison between integer order PID controller based on AMIGO model performance and fractional order PID controller on time domain characteristics. The proposed method aims finally to analyze overall desired performance on fractional order PID controller by adding two extra degrees of freedom over the integer order PID controller with different performance criteria.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents a new way to design PID controller for both integer order and fractional order with a time delay for a typical interacting cylindrical tank system using MATLAB FOMCON toolbox. Here, our work aims to study the performance characteristics of integer order and fractional order PID controller on the current integer order plant obtaining minimum objective function by Nelder - Mead optimization technique with different performance metrics ISE, ITSE and IAE. Next our work shows to make comparison between integer order PID controller based on AMIGO model performance and fractional order PID controller on time domain characteristics. The proposed method aims finally to analyze overall desired performance on fractional order PID controller by adding two extra degrees of freedom over the integer order PID controller with different performance criteria.