The scheduling based on machine learning for heterogeneous CPU/GPU systems

D. Shulga, A. Kapustin, A. Kozlov, A. Kozyrev, M. M. Rovnyagin
{"title":"The scheduling based on machine learning for heterogeneous CPU/GPU systems","authors":"D. Shulga, A. Kapustin, A. Kozlov, A. Kozyrev, M. M. Rovnyagin","doi":"10.1109/EICONRUSNW.2016.7448189","DOIUrl":null,"url":null,"abstract":"Efficient use all of the available computing devices is an important issue for heterogeneous computing systems. The ability to choose a CPU or GPU processor for a specific task has a positive impact on the performance of GPGPU-systems. It helps to reduce the total processing time and to achieve the uniform system utilization. In this paper, we propose a scheduler that selects the executing device after prior training, based on the size of the input data. The article also contains the plots and time characteristics that demonstrate improvement in overall execution time, depending on the input data. The program modules were developed in C++ using CUDA libraries.","PeriodicalId":262452,"journal":{"name":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUSNW.2016.7448189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Efficient use all of the available computing devices is an important issue for heterogeneous computing systems. The ability to choose a CPU or GPU processor for a specific task has a positive impact on the performance of GPGPU-systems. It helps to reduce the total processing time and to achieve the uniform system utilization. In this paper, we propose a scheduler that selects the executing device after prior training, based on the size of the input data. The article also contains the plots and time characteristics that demonstrate improvement in overall execution time, depending on the input data. The program modules were developed in C++ using CUDA libraries.
基于机器学习的异构CPU/GPU系统调度
有效地利用所有可用的计算设备是异构计算系统的一个重要问题。为特定任务选择CPU或GPU处理器的能力对gpgpu系统的性能有积极的影响。它有助于减少总体处理时间,实现系统的统一利用率。在本文中,我们提出了一种调度程序,它根据输入数据的大小,在事先训练后选择执行设备。本文还包含图表和时间特征,这些图表和时间特征显示了总体执行时间的改进,具体取决于输入数据。程序模块是使用CUDA库在c++语言中开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信