Dagaen Golomb, Deepak Gangadharan, Sanjian Chen, O. Sokolsky, Insup Lee
{"title":"Data Freshness Over-Engineering: Formulation and Results","authors":"Dagaen Golomb, Deepak Gangadharan, Sanjian Chen, O. Sokolsky, Insup Lee","doi":"10.1109/ISORC.2018.00034","DOIUrl":null,"url":null,"abstract":"In many application scenarios, data consumed by real-time tasks are required to meet a maximum age, or freshness, guarantee. In this paper, we consider the end-to-end freshness constraint of data that is passed along a chain of tasks in a uniprocessor setting. We do so with few assumptions regarding the scheduling algorithm used. We present a method for selecting the periods of tasks in chains of length two and three such that the end-to-end freshness requirement is satisfied, and then extend our method to arbitrary chains. We perform evaluations of both methods using parameters from an embedded benchmark suite (E3S) and several schedulers to support our result.","PeriodicalId":395536,"journal":{"name":"2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In many application scenarios, data consumed by real-time tasks are required to meet a maximum age, or freshness, guarantee. In this paper, we consider the end-to-end freshness constraint of data that is passed along a chain of tasks in a uniprocessor setting. We do so with few assumptions regarding the scheduling algorithm used. We present a method for selecting the periods of tasks in chains of length two and three such that the end-to-end freshness requirement is satisfied, and then extend our method to arbitrary chains. We perform evaluations of both methods using parameters from an embedded benchmark suite (E3S) and several schedulers to support our result.