Adaptive Iterative Learning Control for Industry Batch Process with Time-Varying and Unknown Parameters

Peiyuan Li, Panshuo Li
{"title":"Adaptive Iterative Learning Control for Industry Batch Process with Time-Varying and Unknown Parameters","authors":"Peiyuan Li, Panshuo Li","doi":"10.1109/DDCLS58216.2023.10166757","DOIUrl":null,"url":null,"abstract":"The batch process is a typical manufacturing mode in industry. In this article, an adaptive ILC method is proposed for the batch process with time-varying and unknown parameters. The proposed method involves merging an adaptive updating law that utilizes the steepest descent method to estimate unknown parameters with a controller that adjusts the estimated system. The proposed condition ensures that the estimated parameter error remains bounded and that the estimated state error is stabilized. The controller utilizes the estimated results to steer the estimated system to track the reference trajectory. A numerical experiment is presented to demonstrate the efficiency of the proposed method.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The batch process is a typical manufacturing mode in industry. In this article, an adaptive ILC method is proposed for the batch process with time-varying and unknown parameters. The proposed method involves merging an adaptive updating law that utilizes the steepest descent method to estimate unknown parameters with a controller that adjusts the estimated system. The proposed condition ensures that the estimated parameter error remains bounded and that the estimated state error is stabilized. The controller utilizes the estimated results to steer the estimated system to track the reference trajectory. A numerical experiment is presented to demonstrate the efficiency of the proposed method.
时变未知工业批处理过程的自适应迭代学习控制
批量生产是工业上一种典型的生产方式。针对具有时变和未知参数的批量过程,提出了一种自适应ILC方法。该方法将利用最陡下降法估计未知参数的自适应更新律与调节估计系统的控制器相结合。所提出的条件保证了估计的参数误差保持有界,估计的状态误差保持稳定。控制器利用估计结果引导估计系统跟踪参考轨迹。通过数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信