Discrimination and relevance determination of heart rate variability features for the identification of congestive heart failure

C. Heinze, D. Sommer, U. Trutschel, M. Golz
{"title":"Discrimination and relevance determination of heart rate variability features for the identification of congestive heart failure","authors":"C. Heinze, D. Sommer, U. Trutschel, M. Golz","doi":"10.1109/ESGCO.2014.6847598","DOIUrl":null,"url":null,"abstract":"We propose a machine learning framework that implements automated relevance determination in order to identify the deciding RR interval features for the discrimination between congestive heart failure and healthy condition. As a result, the most relevant features of heart rate variability (HRV) are narrowly located spectral components in the very-low and low frequency band, and specific ordinal patterns. HRV is generally reduced in comparison to the healthy condition; also the autonomic regulation of heart rate acceleration and deceleration appears to be pathlogically inversed.","PeriodicalId":385389,"journal":{"name":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESGCO.2014.6847598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a machine learning framework that implements automated relevance determination in order to identify the deciding RR interval features for the discrimination between congestive heart failure and healthy condition. As a result, the most relevant features of heart rate variability (HRV) are narrowly located spectral components in the very-low and low frequency band, and specific ordinal patterns. HRV is generally reduced in comparison to the healthy condition; also the autonomic regulation of heart rate acceleration and deceleration appears to be pathlogically inversed.
识别充血性心力衰竭的心率变异性特征的鉴别和相关性测定
我们提出了一个实现自动相关性确定的机器学习框架,以识别用于区分充血性心力衰竭和健康状况的决定性RR间隔特征。因此,心率变异性(HRV)最相关的特征是位于极低和低频段的狭窄频谱分量,以及特定的顺序模式。与健康状况相比,HRV通常降低;此外,心率加速和减速的自主调节似乎在病理上是相反的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信