Predicting Surface Roughness using Keras DNN Model

Donthu Tejakumar, Mahardi, I-Hung Wang, K. Lee, Shinn-Liang Chang
{"title":"Predicting Surface Roughness using Keras DNN Model","authors":"Donthu Tejakumar, Mahardi, I-Hung Wang, K. Lee, Shinn-Liang Chang","doi":"10.1109/ECICE50847.2020.9301928","DOIUrl":null,"url":null,"abstract":"In the manufacturing industries, computer vision techniques play an important role in predicting the surface roughness of the workpiece in turning operations. The regression method has become more popular in the implementation of deep learning as it is the most basic application and. In this study, a regression with Keras deep neural network model is used to accurately evaluate the correlation between surface image characteristics and actual surface roughness using the machining parameters and the gray level of the surface image. The obtained results showed that the Keras Deep Neural Network model with a training data set of 57 values has an average accuracy of 80.52 % for predicting surface roughness in turning operations.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"169 1-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9301928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the manufacturing industries, computer vision techniques play an important role in predicting the surface roughness of the workpiece in turning operations. The regression method has become more popular in the implementation of deep learning as it is the most basic application and. In this study, a regression with Keras deep neural network model is used to accurately evaluate the correlation between surface image characteristics and actual surface roughness using the machining parameters and the gray level of the surface image. The obtained results showed that the Keras Deep Neural Network model with a training data set of 57 values has an average accuracy of 80.52 % for predicting surface roughness in turning operations.
利用Keras DNN模型预测表面粗糙度
在制造业中,计算机视觉技术在车削加工中预测工件表面粗糙度方面发挥着重要作用。回归方法在深度学习的实现中越来越受欢迎,因为它是最基本的应用。在本研究中,利用Keras深度神经网络模型的回归,利用加工参数和表面图像的灰度,准确评估表面图像特征与实际表面粗糙度之间的相关性。结果表明,基于57个训练数据集的Keras深度神经网络模型预测车削加工表面粗糙度的平均精度为80.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信